

RU MEMORIAL COLLEGE

(AUTONOMOUS) (Nationally Accredited with 'A' Grade) PUTHANAMPATTI - 621007.

PG & RESEARCH DEPARTMENT OF MATHEMATICS

PROGRAMME M.Sc. MATHEMATICS

Courses of Study

Scheme of Examinations

&

Syllabi

(For the students admitted from 2019 – 2020 onwards)

PG & RESEARCH DEPARTMENT OF MATHEMATICS

NEHRU MEMORIAL COLLEGE (AUTONOMOUS)

PUTHANAMPATTI - 621007

M.Sc PROGRAMME IN MATHEMATICS (CBCS)

(For the candidate to be admitted form the year 2019 onwards)

Semester	Courses	No. of Credits
I	5 Core courses (Extra Credit Course I)	23 (3)
II	4 Core courses 1 Open Elective course (Extra Credit Course II)	23 (3)
Ш	3 Core courses 2 Elective courses (Extra Credit Course III)	22 (3)
IV	2 Core courses 2 Elective courses 1 Project (Extra Credit Course IV)	22 (3)
TOTAL	20 courses +(4 courses)	90 credits + (12 credits)

NEHRU MEMORIAL COLLEGE (AUTONOMOUS) Post Graduate Programme Course Structure CBCS (For the candidates admitted from 2019-2020 onwards)

Sem	Subject Code	Course	TITLE	HOURS	CREDIT	Int	Ext	TOTAL
	19PM101	CC-I	Linear Algebra	6	5	25	75	100
	19PM102	CC-II	Real Analysis – I	6	5	25	75	100
	19PM103	CC-III	Ordinary Differential	6	4	25	75	100
			Equations					
-	19PM104	CC-IV	Integral Equations,	6	4	25	75	100
Ι			Calculus of Variations					
			and Fourier					
	1052 5405	aa u	Transforms	-	_			100
	19PM105	CC-V	Classical Dynamics	6	-			100
			`otal	30				500
	19PM206	CC-VI	Algebra	6				100
	19PM207	CC-VII	Real Analysis – II	6				100
	19PM208	CC-VIII	Topology	6	5	25	75	100
II	19PM209	CC-IX	Partial Differential	6	4	25	75	100
			Equations	Ũ			, 0	100
		OEC	Open Elective Course	6	4	25	75	100
		 Т	otal	30	23	125	375	500
	19PM311	CC-X	Complex Analysis	6				100
	19PM312	CC-XI	Differential Geometry	6				100
	19PM312	CC-XII	Measure and	6				100
	171 11313		Integration	0	5	20	15	100
	19PM314	CEC-I	Elective Course I	6	4	25	75	100
III	19PM315	CEC-II	Elective Course II	6	4	25	75	100
		T	otal	30	52575525754257542575425755257552575525755257552575425754257552575525755257542575525754257552575425754257542575425754257542575425754257542575425754257542575525754257552575425755257542575525754257552575525755257552575525755257552575525755257552575525 <td< td=""><td>500</td></td<>	500		
	19PM416	CC-XIII	Functional Analysis	5	5	25	75	100
	19PM417	CC-XIV	Stochastic Processes	5	4	25	75	100
IV	19PM418	CEC-III	Elective Course III	6	4	25	75	100
± '	19PM419	CEC-IV	Elective Course IV	6	4	25	75	100
		CC-XV	PROJECT	8	5	25	75	100
		T	otal	30	22	125	375	500
		GRAND T		120				2000

SEMESTER	TITLE	Hours/Week	CREDIT	Ext
Ι	R Programming Lab	3	3	100
II	Mini Project	-	3	100
III	Any online certified course	-	3	100
	(Approved by BOS			
	Chairman/HOD)			
IV	Comprehensive Mathematics	-	3	100

EXTRA CREDIT COURSES OFFERED BY THE DEPARTMENT(OPTIONAL)

CORE COURSES (CC)

Course	Title of the Courses	Lecture Hours	Tutorial Hours	Credit	Prerequisite (Exposure)
CC-I	Linear Algebra	4	2	5	NIL
CC-II	Real Analysis – I	4	2	5	NIL
CC-III	Ordinary Differential Equations	4	2	4	NIL
CC-IV	Integral Equations, Calculus of Variations and Fourier Transforms	4	2	4	NIL
CC-V	Classical Dynamics	4	2	5	NIL
CC-VI	Algebra	4	2	5	CC-I
CC-VII	Real Analysis – II	4	2	5	CC-II
CC-VIII	Topology	4	2	5	CC-II
CC-IX	Partial Differential Equations	4	2	4	CC-IV
CC-X	Complex Analysis	4	2	5	CC-II & CC-VII
CC-XI	Differential Geometry	4	2	4	CC-II & CC-VII
CC-XII	Measure and Integration	4	2	5	CC-II & CC-VII
CC-XIII	Functional Analysis	3	2	5	CC-II, CC-VIII & CC-XII
CC-XIV	Stochastic Processes	3	2	4	Probability & Statistics UG level
CC-XV	Project Work	-	-	5	CCI-CCXIV

CORE ELEECTIVE COURSES (CEC)

Course	Title of the Courses	Lecture Hours	Tutorial Hours	Credit	Prerequisite (Exposure)
CEC-I	Fuzzy Mathematics	4	2	4	Set Theory
CEC-I	Number Theory	4	2	4	NIL
CEC-II	Graph Theory	4	2	4	NIL
CEC-II	Numerical Analysis	4	2	4	NIL
CEC-III	Optimization Techniques	4	2	4	NIL
CEC-III	Probability Theory	4	2	4	NIL
CEC-IV	Coding theory	4	2	4	NIL
CEC-IV	Fluid dynamics	4	2	4	Dynamics (UG level)

OPEN ELEECTIVE COURSES (OEC)

(Courses offered to other Departments)

Course	Title of the Courses	Lecture Hours	Tutorial Hours	Credit	Prerequisite (Exposure)
OEC-1	Mathematical Modeling and Simulation	4	2	4	+2 Level Mathematics
OEC-2	Statistics	4	2	4	+2 Level Mathematics

NEHRU MEMORIAL COLLEGE (AUTONOMOUS) (Nationally Accredited with 'A' Grade) PUTHANAMPATTI - 621007. UG Programme (Mathematics)

(For the candidates admitted from 2019 - 2020 onwards)

Bloom's Taxonomy Based Assessment Pattern

Knowledge Level

K1 – Acquire/Remember; K2 – Understanding; K3 – Apply; K4 – Evaluate; K5 – Analyze

1. Part I, II and III

Theory (External + Internal = $75 + 25 = 2$	100 marks)
---	------------

External/Interna	1					
Knowledge Level	Sectio	n	Marks	Hrs	Total	Passing Mark
K1-K4	A (Answer all)	$10 \times 2 = 20$				
K3-K5	B (Either or pattern)	$5 \times 5 = 25$	3	75	38	
K1, K3-K5	C (Answer 3 out of 5))	$3 \times 10 = 30$			
Internal						
Components		Maximum Marks	Conversion	Hrs	Total	Passing Mark
0	CIA 1	75	10	3		
0	CIA 2	75	10	3	25	12
Se	eminar	20	5	-		
				Total	100	50

NEHRU MEMORIAL COLLEGE (AUTONOMOUS) Puthanampatti, Trichy Dist.

SYLLABUS REVISION 2019-2020

Department	: Mathematics
Academic Programme offered	: PG Programme
Year of Implementation	: 2019-2020

OBE Elements for M.Sc Mathematics programme.

Programme Educational objectives (PEO)

PEO 1: Technical Proficiency:

The program gives success in getting employment in different areas, such as Government, public and private sectors.

PEO 2: Professional Growth:

As mathematics is mother of all sciences, its impact is very wide covering all the areas of research and development.

PEO 3: Management Skills:

This program helps each individual in developing personality skills like time management, crisis management, stress management, interviews and working as a team and group.

PEO4: Ethical Skills:

This program makes the individual to understand and appreciate professional ethics, community living and Nation Building initiatives.

Program Outcome (PO)

PO1:Apply knowledge and principle of Mathematics, in all the fields of learning including higher research and the same to the needs of Employer/Institution/Society.

- PO2: Gain analytical skills in the field of Mathematics.
- PO3: Develop the logical thinking skills
- PO3: Understand the concepts of real and complex analysis
- PO4: Use the knowledge of pure and applied mathematics to solve complex mathematical

problems

PO5: Innovate and invent novel ideas to model the real world problems.

PO6: Crack the exams approved by UGC namely CSIR - NET (JRF/Lectureship) and SET.

PROGRAMME SPECIFIC OUTCOME (PSO)

- PSO 1: Connect Mathematics to real life problems in their lives.
- PSO 2: Do intensive research in pure and applied mathematics.
- PSO 3: Analyze problems of industry and society
- PSO 4: Model and provide solutions to scientific and real life situations.
- PSO 5: Prepare for a career in which critical thinking is a central feature.

Course Code & Title	19PM101 : Linear Algebra	Percentage of Re	vision : 100%					
Class	M.Sc Mathematics	Semester	II					
Cognitive Level	 K - 1 Acquire/Remember K - 2 Understand K - 3 Apply K - 4 Evaluate K - 5 Analyze 							
Course Objectives	 Aim of this course is to give the students a thorough knowledge of the various aspects of Linear Algebra train the students in problem solving as a preparatory for competitive exams 							
Employability and Skill Development	Global need Participative learning and Problem solving							
UNIT	Content		No. of Hours					
Ι	Vector spaces - subspaces - linear combina linear equations - linear dependence and l bases and dimension - maximal linearly ind	inear independence -	15					
II	(Linear transformations, null Spaces, and representation of a linear transformatio linear transformations and matrix multipli and isomorphisms - the change of coordina	n - combination of ication - invertibility	15					
III	(Elementary matrix operations and eleme rank of a matrix and matrix inverses (equations - theoretical aspects and com (determinants of order 2 - determinants of o (determinants -summary - important facts a	ntary matrices - the) - system of linear) putational aspects -) order n - properties of)	15					
IV	(Eigen values and eigen vectors - diagon (Hamilton Theorem).	nalizability - Cayley	15					
V	The Jordan Canonical Form 1 - the Jordan (the minimal polynomial)	Canonical Form 2 -	15					
Reference	Text Books: Stephen H. Friedberg, Arnold J. Insel a Private Limited, New Delhi, 2014. UNIT – I : Ch 1 UNIT – II : Ch 2: (2.1 to 2.5) UNIT – III : Ch 3 and Ch 4: (4.1 to 4.4) UNIT – IV : Ch 5: (5.1 to 5.4) UNIT – V : Ch 7(7.1 to 7.3)	and Lawrence Edition	n, PHI Learning					

	Reference Books:						
	1. S. Kumaresan, Linear Algebra, Prentice-Hall of India Ltd, 2000.						
	2. K. Hoffman and R. Kunze, Linear Algebra, Second Edition, PHI, New						
	Delhi 1975.						
	3. M.Artin, Algebra, Prentice Hall of India, New Delhi, 1994.						
	4. Jin Ho Kwak, Linear Algebra, Second Edition, Birkhäuser, 2004.						
	5. I.N. Herstein, Topics in Algebra, Wiley Eastern Limited, New Delhi, 1975.						
	6. Gilbert Strang, Linear Algebra and its applications, Cengage Learning 8th Indian edition, 2011						
	7. A.R. Rao, P. Bhimashankaram, Linear Algebra, Tata McGraw Hill, 1996.						
	 V. Krishnamurthy et al, Introduction to Linear Algebra, East West Press Ltd, 1985 						
	On completion of the course, students should be able to						
	CO 1: apply the knowledge of bases and dimension of vector spaces and linear						
	transformation.						
Course	CO2: understand the operations on matrices, matrix of linear transformation and						
Outcomes	properties of determinant.						
	CO3: evaluate the eigen values and the eigen vectors of linear transformations.						
	CO4: demonstrate on applying the Jordan canonical forms to vector spaces.						

CO/PO	РО								PSO			
	1	2	3	4	5	6	7	1	2	3	4	5
CO1	S	S	S	S	S	S	S	S	S	М	М	S
CO2	S	S	S	S	S	S	S	S	S	М	S	S
CO3	S	S	S	S	S	S	S	S	S	М	S	S
CO4	S	S	S	S	S	S	S	S	S	М	М	S

Strongly Correlating(S)	-	3 marks
Moderately Correlating (M)	-	2 marks
Weakly Correlating (W)	-	1 mark
No Correlation (N)	-	0 mark

Course Code & Title	19PM102 : Real Analysis-I	Percentage of Re	evision : 40%
Class	M.Sc Mathematics	Semester	Ι
Cognitive Level	K-1Acquire/RememberK-2UnderstandK-3ApplyK-4EvaluateK-5Analyze		
	The Course aims to		
Course	• understand the basics of metric spa	ces	
Objectives	• lay the foundation for the subseque		eal analysis,
	complex analysis and functional an	•	2
Employability and Skill Development	Global need I	nd Problem	
UNIT	Content		No. of Hours
Ι	(Sets and Functions, Mathematical Induction (sets. Real Number system: Algebraic and (Infimum, Supremum, Countable and unco	nd Order properties:	15
II	(Metric spaces – Definition and examples - sets)		15
III	(Sequences and Series of real numbers) monotone sequences – Cauchy criterion (Convergent sequences in metric spaces) points – Cauchy sequences – Bounded sets	limsup, liminf -limit and cluster	15
IV	Continuous functions – Equivalent Definit Uniform Continuity -Limit of a function – Real Valued function - Compact spaces a Continuous functions on Compact spaces- Compact Metric spaces.	Discontinuities of a nd their properties –	15
V	Connectedness : Connected spaces – Comp Examples- Baire Category Theorem – Principle.		15
Reference	 Text Books: 1. R.G. Bartle and D.R. Sherbert, Ir John Wiley & Sons, 2000. 2. S. Kumaresan, Topology of Metr New Delhi, 2005. UNIT – I :Ch 1 and 2 from (1) UNIT – II :Ch 1 from (2) 		•

	UNIT – III :Ch 3 from (1) and Ch 2 (§ 2.1 to 2.5 from (2))										
	UNIT – IV :Ch 3, Ch 4 from (2) (\S 3.3 and 3.6 omitted) and Ch 5 from (1)										
	UNIT – V :Ch 5 (§ 5.1) and Ch 6 (§ 6.1, 6.3 and 6.4 (section 6.2, 6.3.16 and										
	6.3.17 omitted) from (2)										
	Reference Books:										
	1. Edward D. Gaughan, Introduction to Analysis, AMS, Indian edition,										
	2010.										
	2. Kenneth A. Ross, Elementary Analysis: The Theory of Calculus, Springer										
	Verlag, 2004.										
	3. M.H. Protter, C.B. Morrey, A First Course in Real Analysis, 2nd Edition,										
	Springer Verlag, 1991.4. S.K. Berberian, A First course in Real Analysis, Springer Verlag, 1994.										
	5. Charles Chapman Pugh, Real Mathematical Analysis, Springer Verlag,										
	2002.										
	6. R.P. Boas, A primer of real functions, Mathematical Association of										
	America, 1966.										
	7. Tom M. Apostol, Mathematical Analysis 2 edn, Narosa, New Delhi,										
	1985.										
	8. Walter Rudin, Principles of Mathematical Analysis, Third Edition,										
	Mcgraw Hill, 1976										
	9. N.L. Carothers, Real Analysis, Cambridge University Press, South Asian										
	Edition, 2000.										
	On completion of the course, students should be able to										
	CO1: describe the concepts of sets and functions, metric spaces, continuity and										
	connectedness.										
Course	CO2: demonstrate on sequences and series.										
Outcomes	CO3: demonstrate on applying Baire Category Theorem, Banach Contraction										
S utcomes	Principle .										
	CO4: analyze Cauchy sequences, complete metric spaces and connected metric										
	spaces.										
L	spaces.										

CO/PO		РО							PSO				
	1	2	3	4	5	6	7	1	2	3	4	5	
CO1	S	S	S	S	S	М	S	S	S	М	М	S	
CO2	S	S	S	S	S	М	S	S	S	М	М	S	

СО3	S	М	S	S	М	S	S	S	S	S	М	S
CO4	S	S	S	S	S	М	S	S	S	М	М	S

Strongly Correlating(S) Moderately Correlating (M) Weakly Correlating (W) No Correlation (N)

3 marks 2 marks

- 1 mark

- 0 mark

-

Course Code & Title	19PM103 : Ordinary	Differential Equation	18
Class	M.Sc Mathematics	Semester	Ī
Cognitive Level	K-1Acquire/RememberK-2UnderstandK-3ApplyK-4EvaluateK-5Analyze		
Course Objectives	 The Course aims to gain the knowledge of the method equations, special functions and equations. 	nonlinear autonomou	is system of
Employability and Skill Development	Global need	ng and Problem	
UNIT	Content	No. of Hours	
Ι	(Second order linear equations and power (general solution of the homogeneous of (variation of parameters – A review of (solution of first order equations – Ordinal	of	
II	(Power series solutions and special funct (Regular singular points)	tions singular points	- 15
III	(Some special functions of Mathematic (polynomials – Properties of Legendre (functions – The Gamma functions – (functions.)	polynomials – Bess	el
IV	(System) of first order equations: (Homogeneous linear system with const (method of successive approximation – Pi	tant coefficient – T	—
V	(Non - linear equations: Autonomous system) and its phenomena – Types of critical (Critical points and stability for linear (Liapunov's direct method – Simple critical Linear systems.)	- yy	
	Text Books: G.F Simmons, Differential equations v TMH, New Delhi 1984.	with Applications ar	d Historical Notes,
	UNIT – I :Ch 3(§15,16,19) & Ch 5(§25 UNIT – II : Ch 5(§28 – 31)	,26,27)	

	UNIT – III : Ch 6(§32 – 35)
	UNIT – IV : Ch 7(§37 & 38) Ch 11(§55 & 56)
	UNIT – V : Ch 8($\$40 - 44$)
	Reference Books:
Reference	
	1. M.E. Taylor, Introduction to Differential Equations, AMS Indian Edition,
	2011.
	2. M. Braun, Differential Equations and Their Applications, Springer, 1992.
	3. Boyce and DiPrima, Elementary Differential Equations and Boundary
	Value Problems, 7 th Edn, John Wiley, 2001.
	4. S. Deo et al, A textbook of Differential Equations, McGraw Hill, 2002.
	5. Lawrence Perko, Differential Equations and Dynamical Systems,
	Springer, 2006.
	6. E.A. Coddington and N. Levinson, Theory of Ordinary Differential
	Equations, McGraw Hill, 1955.
	7. Tyn Myint-U, Ordinary Differential Equations, North-Holland, New
	York, 1978.
	8. W.T Reid, ordinary Differential equations, John Wiley and sons, New
	York, 1971.
	On completion of the course, students should be able to
	CO1:describe the methods of solving first and second order ODE and non linear
Course	autonomous system of ODE.
Outcomes	CO2: understand the special functions of Mathematical Physics and the concept
	of stability and critical points of linear system of equations.
	CO3: evaluate the power series solution of ODE.
	CO4: demonstrate on applying Picard's theorem to find the solution of ODE's.

СО/РО		РО								PSO		
	1	2	3	4	5	6	7	1	2	3	4	5
C01	S	S	S	М	S	S	S	S	S	М	S	S
CO2	S	S	S	М	S	S	S	S	S	М	S	S
СОЗ	S	S	S	М	S	S	S	S	М	М	S	S

CO4	S	S	S	М	S	S	S	S	Μ	М	S	S	
													l
Strongly Correlating(S)					-	3 ma	arks						
Moderate	ly Corr	elating	(M)	- 2 marks									
Weakly C	Veakly Correlating (W) -			-	1 m	ark							
No Corre	lation (I	N)			-	0 mark							

Course Code & Title	19PM104: Integral Equation, Calcu	Ilus of Variations and	Fourier Transforms							
Class	M.Sc Mathematics	Semester	Ι							
Cognitive Level	K-1Acquire/RememberK-2UnderstandK-3ApplyK-4EvaluateK-5Analyze									
Course Objectives	 The Course aims to introduce the concepts of integral equations, calculus of variations, linear integral equations, method of successive approximations, variational problems with fixed boundaries, variational problems with moving boundaries and Fourier Transform. 									
Employability and Skill Development	Global need	ing and Problem								
UNIT	Conte	nt	No. of Hours							
Ι	Linear Integral Equations: Definition Special kind of Kernels – eigen valu Convolution Integral – The inner an functions –reduction to a system examples – Fredholm alternative – e method.	es and eigen function ad scalar (product of t of algebraic equation	s — wo 1 —							
Π	Method of Successive Approximati Examples – Volterra Integral Equat results about the resolvent kernel Theory: The method of Solution of First Theorem – Second Theorem – T only).	ion – Examples – So) – Classical (Fredho f Fredholm - Fredholı	me olm n's							
III	Variational Problems with Fixed Bo variation and its properties – Euler problems for functionals – function order derivatives – functions depende independent variables – variational form.	nal) her eral)								
IV	Variational Problems with moving the form $I[y(x)] = \int_{x_1}^{x_2} F(x, y, y') dx$ with a movable boundary for a functions – one sided variations – su extremum field of extremals : – Jaco	x) (- Variational Problectional dependent on the first or	em wo an							

	(function – Legendre condition.)									
V	Fourier Transform: Fourier sine and cosine transforms-	15								
	properties, convolution-solving integral equations-finite Fourier transform-finite Fourier sine and cosine transform-									
	Fourier integral theorem Parseval Identity. Hankel transform:									
	definition-Inverse formula-linearity property-Hankel									
	(transform of the derivatives of the function-Hankel transform)									
	of differential operation.									
	Text Books: 1. Ram.P.Kanwal, Linear integral equations theory	and technique,								
	Academic press 1971.2. A.S. Gupta, Calculus of Variations with Applications, Prentice – Hall of									
	India Pvt. Ltd., New Delhi, 1997.3. A.R. Vasistha, R.K. Gupta, Integral transforms, Krishna Pr Media Pvt. Ltd., India 2002.									
	UNIT-I: Ch1 and 2 of (1)									
Reference	UNIT-II:Ch3 and 4 of (1)									
	UNIT-III:Ch1[1.1-1.6] of (2)									
	UNIT-IV:Ch2[2.1-2.3] & ch3[3.1-3.4] of (2)									
	UNIT-V:Ch7 and 9 of (3)									
	Reference Books:									
	1. F.G. Tricomi,, Integral Equations, Dover Publications 1897.									
	 Bruce Van Brunt, Calculus of Variations, Springer, 2006 L.Elsgolts, Differential equations and the calculus o Publishers, Moscow 1970. 									
Course	On completion of the course, students should be able to									
Outcomes	CO1: solve the linear integral equations .									
	CO2: find the solutions of Volterra and Fredholm integral equation									
	CO3: demonstrate on variational problems on moving boundaries	es and fixed								
	CO4: find the Fourier transform and Hankel transform of variou	s functions.								
<u> </u>										

CO/PO		РО								PSO		
	1	2	3	4	5	6	7	1	2	3	4	5
C01	S	S	S	М	S	S	S	S	S	М	М	S
CO2	S	S	S	М	S	S	S	S	S	М	М	S
СОЗ	S	S	S	М	S	S	S	S	S	М	S	S
CO4	S	S	S	М	S	S	S	S	S	М	S	S

Strongly Correlating(S)	-	3 marks
Moderately Correlating (M)	-	2 marks
Weakly Correlating (W)	-	1 mark
No Correlation (N)	-	0 mark
Weakly Correlating (W)	- -	1 mark

Course Code & Title	19PM105 : Classical Dynamics									
Class	M.Sc Mathematics	Semester	Ι							
Cognitive Level	K - 1Acquire/RememberK - 2UnderstandK - 3ApplyK - 4EvaluateK - 5Analyze									
Course Objectives	 The Course aims to gain a detailed knowledge of the mechanical system of particles. learn the applications of Lagrange's and Hamilton's equations . 									
Employability and Skill Development	Global need F	arning and Problem								
UNIT	Content		No. of Hours							
Ι	Introductory concepts: Mechanical system Coordinates Constraints – Virtual Work – Momentum.	15								
II	Lagrange's equations: Derivations of Lagr Examples – Integrals of Motion.	ns –) 15								
III	Hamilton's equations: Hamilton's Principl Equations.	15								
IV	(Hamilton – Jacobi theory: Hamilton's Prin (Hamilton-Jacobi Equation).	- 15								
V	Canonical transformations: Differential for Functions – Lagrange and Poisson Bracket		iting 15							

	Text Book:
	Donald T. Greenwood, Classical Dynamics, Dover Publication. New York.
	UNIT- I: Ch1 (§1.1 – 1.5) UNIT- II: Ch2 (§2.1 – 2.3)
Deferment	UNIT- III: Ch4 (§4.1 - 4.2)
Reference	UNIT- IV: Ch5 (§5.1-5.2)
	UNIT -V: Ch6 (§6.1-6.3).
	Reference Books:
	1. Goldstein, H., <i>Classical Mechanics</i> . Addison Wesley Press, Inc., 1950
	2. Synge, J.L. and Griffith, B.A., <i>Principles of Mechanics</i> . Third Edition., McGraw-Hill company,1959
	On completion of the course, students should be able to
	CO 1: understand the 3N-Coordinate system made up of N-Spatial
Course	coordinates, N-velocity coordinates and N-acceleration coordinates
Outcomes	CO 2: analyse the motion of mechanical systems with constraints using Lagranian description
	CO 3: apply Hamilton's principle and gain proficiency in solving equations of motions
	CO 4: use the Hamilton-Jacobi theory in solving equations of motions

CO/PO	РО							PSO				
	1	2	3	4	5	6	7	1	2	3	4	5
CO1	S	S	S	М	S	М	S	S	S	М	М	S
CO2	S	S	S	М	S	М	S	S	S	М	М	S
СОЗ	S	М	S	М	S	М	S	S	S	М	М	S
CO4	S	М	S	М	S	М	S	S	S	М	S	S

-	3 marks
-	2 marks
-	1 mark
-	0 mark
	-

Course Code & Title	19PM206 :								
Class	M.Sc Mathematics	Semester	II						
Cognitive Level	K - 1Acquire/RememberK - 2UnderstandK - 3ApplyK - 4EvaluateK - 5Analyze								
Course Objectives	 The Course aims to gain the .knowledge of advanced concepts of group theory and ring theory. learn extension fields, elements of Galois theory and various forms of linear transformations 								
Employability and Skill Development	Global need	rning and Problem							
UNIT	Content		No. of Hours						
	Group theory: Another counting principle theorem, Direct Products, Finite Abelian		15						
	Ring theory: Euclidean Rings, A particula Polynomial Rings, Polynomials over the l Polynomial Rings over commutative Ring	, 15							
	Vector spaces and modules: Dual spaces, Inner product spaces, Modules.								
	(Fields: Extension Fields, Roots of polynomials, More about15(Roots, The Elements of Galois's theory.15								
	Linear transformations: Characteristic Canonical Forms: Triangular Form, Nilpo Hermitian, Unitary and Normal Transforr	otent Transformat							

	Text Book:						
	I. N. Herstein, Topics in Algebra, second Edition John Wiley and sons Pvt. Ltd., 1975.						
	UNIT- I : Ch2 (§2.11 - 2.14)						
	UNIT -II : Ch3 (§3.7 - 3.11)						
	UNIT- III: Ch4 (§4.3 - 4.5)						
Reference	UNIT- IV: Ch5 (§5.1, 5.3, 5.5& 5.6)						
Kelefence	UNIT- V : Ch6 (§6.2, 6.3, 6.4 & 6.10).						
	Reference Books:						
	1) Serge Lang, Algebra, Revised Third Edition, Springer Verlag, 2002.						
	 Kenneth Hoffman and Ray Kunze, Linear Algebra, Second Edition ,Prentice-Hall of India pvt.Ltd.,New Delhi,1975. David S.Dummit and Richard M.Foote, Abstract Algebra, Wiley and Sons. Third Edition, 2004. 						
	On completion of the course, students should be able to						
	CO 1: understand Sylow's theorem and its applications and Galois theory and its						
Course	applications						
Outcomes	CO 2: apply suitable methods to find the roots of the polynomials						
	CO 3: analyze linear transformations.						
	CO 4: evaluate characteristic roots of the matrix						

CO/PO		РО							PO PSO						
	1	2	3	4	5	6	7	1	2	3	4	5			
CO1	S	S	S	W	S	W	S	М	М	М	М	S			
CO2	S	S	S	W	S	W	S	М	М	М	М	S			
CO3	S	М	S	W	S	W	S	М	М	М	М	S			
CO4	S	М	S	W	S	W	S	М	S	М	S	S			

Strongly Correlating(S)	-	3 marks
Moderately Correlating (M)	-	2 marks
Weakly Correlating (W)	-	1 mark
No Correlation (N)	-	0 mark

Course Code & Title	19PM207: Real Analysis-II	Percentage of revisio 80%		
Class	M.sc-Mathematics	Semester	II	
Cognitive Level	 K1 – Acquire/Remember K2 – Understand K3 – Apply K4 – Evaluate K5 – Analyze 	I		
Course Objectives	 The Course aims to provide the knowledge of differentiation of series of functions of several variables. 	single variable, s	equences and	
Employability) and (Skill) (Development)	Global need	Participative lear Problem solving	ming and	
UNIT	Content		No. of	
			Hours	
	Local extrema – Rolle's theorem – Mean Value The Taylor's formula – Derivatives of vector valued fun Functions of Bounded variation and rectifiable curv variation –Functions of bounded variation – Equiva Change of parameter	ictions – es – Total		
Π	Riemann-Stieltjes integral: Definition – linear pr integral – Necessary conditions for the exi fundamental theorem of Integral calculus - Mean V for integrals – Second fundamental theorem of Inte Change of variable in a Riemann integral – Second Theorem for Riemann Integrals	stence - First Value Theorems regral calculus -	15	
III	Sequence and series of functions – Point wise Uniform convergence – Uniform convergence an Uniform convergence and Differentiation - Suffic for uniform convergence of a series	nd integration –	15	
IV	Functions of Severable variables – Directional de derivative – Jacobian – Chain rule –Mean Va Taylor's formula.		15	
V	Inverse function theorem – Implicit function theorem problems with side conditions	m – Extremum	15	
Reference	Text Book: Tom M. Apostol, Mathematical Analysis Secon House, New Delhi, 1985. UNIT –I :Ch 5 and 6 UNIT –II : Ch 7 (§7.1 -7.22)	nd Edition, Naros	a Publishin	

	UNIT-III : Ch 9(§ 9.1 - 9.11) and (§9.14 - 9.18)
	UNIT–IV : Ch 12
	UNIT – V :Ch 13
	Reference Books:
	 M.H. Protter, C.B. Morrey, A First Course in Real Analysis, 2nd Edition, Springer Verlag International Edition, 1991. Torrence Tao, Mathematical Analysis, Vol I & II, Hindustan Book Agency, 2006. J.E. Marsden, A.J. Tromba, A.Weinstein, Basic multivariable calculus, Springer Verlag, 1993.
	 Robert T. Seeley, Calculas of Several Variables, Scott, Foresman and Co, 1970.
	 T.W. Korner, A Companion to Analysis, AMS Indian edition, 2011. N.L. Carothers, Real Analysis, Cambridge University Press, South Asian Edition, 2000 S. Kumaresan, A Course in Differential Geometry and Lie groups, Hindustan Book Agency, 2002 Walter Rudin, Principles of Mathematical Analysis, Third Edition, Mcgraw Hill, 1976. Tom Apostol, Calculas II, Mcgraw Hill, 1983
Course Outcomes	 On completion of the course, students should be able to CO1:know differentiation of single variables. CO2: acquire the knowledge of Riemann-Stieltjes integrals.and inverse function theorem CO3: demonstrate on the convergence and uniform convergence of sequence and series of functions CO4:evaluate directional derivative, total derivative, Jacobian of functions of several variables.

CO/PO	РО						PSO					
	1	2	3	4	5	6	7	1	2	3	4	5
CO1	S	М	S	S	S	М	S	М	М	М	М	S
CO2	S	М	S	S	S	М	S	М	М	М	М	S
CO3	S	М	S	S	S	М	S	М	М	М	М	S
CO4	S	S	S	S	S	S	S	М	М	М	М	S

Strongly Correlating(S) - 3 marks

Moderately Correlating (M)	-	2 marks
Weakly Correlating (W)	-	1 mark
No Correlation (N)	-	0 mark

Course Code & Title	19PM208 : Topology					
Class	M.Sc Mathematics	Semester	П			
Cognitive Level	K-1Acquire/Remember $K-2$ Understand $K-3$ Apply $K-4$ Evaluate $K-5$ Analyze					
Course Objectives	 The Course aims to enable the students to learn about their properties in terms of contin 		1 0 1			
Employability and Skill Development	Global need	Participative lea solving	rning and Problem			

UNIT	Content	No. of Hours
Ι	Topological spaces - Basis for a topology - The order topology - The product topology on $X \times Y$ - The subspace topology - closed sets and limit points.	15
II	Continuous functions - the product topology - The metric topology.	15
III	Connectedness: connected subspaces of the Real line - components and local connectedness	15
IV	Compactness: compact subspaces of the Real line - Limit Point Compactness - Local Compactness.	15
V	The Countability Axioms - The Separation Axioms – Normal Spaces – The Urysohn Lemma – The Urysohn metrization theorem – The Tietz extension theorem.	15
Reference	Text Book: James R. Munkres, Topology (2 nd edition), Pearson Education Delhi – 2002 (3 rd Indian Reprint) UNIT –I : Ch 2 (§12 – 17) UNIT–II: Ch 2 (§18 – 21)	n Pvt. Ltd., New
Kelerence	UNIT–III: Ch 3 (§23 – 25)	

	UNIT–IV : Ch 3 (§26 – 28)
	UNIT–V :Ch 4 (§30–35)
	Reference Books:
	 G.F. Simmons, Introduction to topology and Modern Analysis M.C.Graw Hill company, 1963.
	2. James Dugundji, Topology, Prentice Hall of India Pvt. Ltd., 1975.
	On completion of the course, students should be able to
	CO1: develop their abstract thinking skills
	CO2: provide precise definitions and appropriate examples and counter examples
Course	of fundamental concepts in general topology.
Outcomes	CO3: acquire knowledge about various types of topological spaces and their properties
	CO4: appreciate the beauty of the mathematical results like UryZohn's Lemma
	and understand the dynamics of the proof techniques.

CO/PO	РО							PSO				
	1	2	3	4	5	6	7	1	2	3	4	5
C01	S	S	S	S	М	М	S	S	S	М	S	S
CO2	S	S	S	S	М	М	S	S	S	М	S	S
CO3	S	S	S	S	М	М	S	S	S	М	S	S
CO4	S	S	S	S	М	М	S	S	S	М	S	S

Strongly Correlating(S)	-	3 marks
Moderately Correlating (M)	-	2 marks
Weakly Correlating (W)	-	1 mark
No Correlation (N)	-	0 mark

Course Code	10DM200	::::::::::::::::::::::::::::::::::::::		
& Title	19PM209 : Partial D	oifferential Equati	ons	
Class	M.Sc Mathematics	Semester	II	
Cognitive Level	K - 1Acquire/RememberK - 2UnderstandK - 3ApplyK - 4EvaluateK - 5Analyze			
Course Objectives	 The Course aims to help the students to understand lin solving them using Charpit's and of variables and by method of inte the study of Laplace equation, way their classifications. 	Jacobi's methods, gral transforms. ve equation and d	methods of separation	
Employability and Skill Development	Global need	Participative lear solving	ning and Problem	
UNIT	Content		No. of Hours	
I	(First Order PDE – Curves and Surfaces – (Order PDE – Classification of Integrals – (the First order – Paffian Differential Equa (Systems – Charpit's Method – Jacobi's M (Integral Surfaces) Through a Given C	Linear Equations tions – Compatib ethod.	le	
	(Equations – Non-linear First order PDE.)	Quusi ii	10	
III	Second order PDE: Genesis of sec Classification of second order PDE – On Equation – Vibrations of an Infinite stri Semi-infinite string – Vibrations of a st (Method of Separation of variables).	ne-Dimensional v ng – Vibrations	vave of a	
IV	Laplace's Equation: Boundary Value Problems – Maximum15and Minimum principles –The Cauchy Problem – TheDirichlet problem for the Upper Half Plane - The NeumannProblem for the Upper Half Plane – The Dirichlet Interiorproblem for a circle – The Dirichlet Exterior problem for acircle – The Neumann problem for a circle – The Dirichletproblem for a Rectangle – The Harnack's Theorem – Laplace'sEquation – Green's Function.			
V	(Heat Conduction Problem – Heat Con (Case – Heat conduction Finite Rod case – – Wave Equation – Heat Conduction Equa			

	Text Book:					
	T. Amarnath, an Elementary Course in Partial Differential Equations,					
	Narosa1997.					
Reference	UNIT I:Ch 1 (§1.1-1.8)					
	UNIT II: Ch 1 (§1.9-1.11)					
	UNIT III: Ch 2 (§2.1–2.3.5) except 2.3.4.					
	UNIT IV: Ch 2 (§2.4 – 2.4.11)					
	UNIT V: Ch 2 (§2.5 – 2.6.2).					
	Reference Book:					
	I.C.Evens, Partial Differential Equations, Graduate studies in Mathematics, Vol					
	19, AMS, 1998.					
	On completion of the course, students should be able to					
	CO1: recollect the first order and second order partial differential equations					
	and their solution.					
	CO2: understand the linear partial differential equations with constant and					
Course	variable coefficients, boundary value problems and application of					
Outcomes	calculus of variations.					
	CO3: gain good knowledge in applying Charpit's and Jacobi's methods,					
	method of separation of variables and the method of integrals to obtain					
	solutions of partial differential equations.					
	CO4: demonstrate on the canonical forms of second order PDEs and bounded					
	value problems by Dirichlet and Neumann.					

CO/PO		РО							PSO			
	1	2	3	4	5	6	7	1	2	3	4	5
CO1	S	М	S	S	М	S	S	S	М	S	М	S
CO2	S	М	S	S	М	S	S	S	М	S	М	S
CO3	S	М	S	S	М	S	S	S	М	S	М	S
CO4	S	М	S	S	М	S	S	S	М	S	М	S

Strongly Correlating(S)	-	3 marks
Moderately Correlating (M)	-	2 marks
Weakly Correlating (W)	-	1 mark
No Correlation (N)	-	0 mark

Course Code & Title	19PM311: Complex Analysis	Percentage of	Revision :90%		
Class	M.Sc Mathematics	Semester	III		
Cognitive Level	 K1 – Acquire/Remember K2 – Understand K3 – Apply K4 – Evaluate K5 – Analyze 				
Course Objectives	 The Course aims to provide a transition from upostgraduate advanced topics enable the learners to understand give a deeper understanding in tand maximum Principle. 	and evaluate the def	inite integrals.		
Employability and Skill Development	Global need Participative learning and Problem solving				
UNIT	Content	L	No. of Hours		
Ι	The real numbers - The field of com complex plane – Polar representation numbers - Lines and half planes in the extended plane and its spherical represent	and roots of comple e complex plane -Th	X		
II	Power series- Analytic functions - A mapping – Mobius Transformation		15		
III	Riemann-Stieltjes integrals - Power se analytic functions - Zeros of an analytic of a closed curve - Cauchy's Theorem a The homotopic version of Cauchy's connectivity – Counting zeros - The Op Goursat's Theorem	c function - The inde and Integral Formula Theorem and simpl	e		
IV	Classification of singularities - Residues - The Argument 15 Principle 15				
V	The Maximum Principle - Schwarz's Lemma - Convex15functions and Hadamard's Three Circles Theorem- Phragmen- Lindelof Theorem15				
Reference	Text Book: J.B. Conway, Functions of One Complex UNIT–I :Ch 1 UNIT–II :Ch 3 UNIT–III :Ch 4 UNIT–IV :Ch 5 UNIT–V :Ch 6 Reference Books:	x Variable, Narosa, 2	edn., 1991		

	1. Bak, J., Newman, D.J., Complex Analysis, Springer-Verlag, New York,						
	1997.						
	2. L.S. Hahn and B. Epstein, Classical Complex analysis, Jones and Barlett						
	Student Edition, 2011.						
	3. R. Priestely, Introduction to Complex Analysis, Oxford India, 2008.						
	4. Lars V. Ahlfors, Complex Analysis, Third Ed. McGraw-Hill Book						
	Company, Tokyo, 1979.						
	5. Theodore W. Gamelin, Complex Analysis, Springer Verlag, 2001.						
	6. Donald Sarason, Notes on Complex Function theory, Hindustan Book						
	Agency, 1994.						
	7. V. Karunakaran, Complex Analysis 2 edn, Narosa, New Delhi, 2005.						
	8. S. Ponnusamy and H. Silverman, Complex Variables with applications,						
	Birkhauser, 2006.						
	9. R.V. Churchill & J.W. Brown, Complex Variables and applications,						
	McGraw-Hill, 1990						
	On completion of the course, students should be able to						
	CO1: acquire the knowledge of analytic functions and Mobius transformation.						
Course	CO2: understand the concept of complex integration.						
Outcomes	CO3: demonstrate on Cauchy theorems and open mapping theorem.						
	CO4: classify the singularities and evaluate the residue						

CO/PO	РО								-	PSO	-	
	1	2	3	4	5	6	7	1	2	3	4	5
CO1	S	М	S	М	М	S	S	S	М	S	М	S
CO2	S	М	S	М	М	S	S	S	М	S	М	S
CO3	S	М	S	М	М	S	S	S	М	S	М	S
CO4	S	М	S	М	М	S	S	S	М	S	М	S

Strongly Correlating(S)	-	3 marks
Moderately Correlating (M)	-	2 marks
Weakly Correlating (W)	-	1 mark
No Correlation (N)	-	0 mark

Course Code & Title	19PM312: Differential Geometry	of Revision : 90%				
Class	M.Sc Mathematics	Semester	<u>111</u>			
Cognitive Level	 K1 – Acquire/Remember K2 – Understand K3 – Apply K4 – Evaluate K5 – Analyze 					
Course Objectives	 Aim of this course is to make the student to learn about Geodesics on surfaces and curva 	• •	-			
Employability and Skill Development	Global need	ing and Problem				
UNIT	Content	No. of Hours				
Ι	Graphs and Level sets - Vector fields - T	angent space.	15			
II	Surfaces –vector fields on surfaces.	15				
III	Gauss map – geodesics	15				
IV	Parallel Transport - Weingarten map	15				
V	Curvature of plane curves - arc length an Curvature of surface.	15				
Reference	 Text Book Elementary topics in Differential Geometry, J.A.Thorpe ,Undergraduate texts in Mathematics, Springer- Verlag, 1979. UNIT-I : Ch 1 to 3. UNIT-II : Ch 4 and 5. UNIT-III : Ch 6 and 7. UNIT-IV : Ch 8 and 9. UNIT-V : Ch 10 to 12. Reference Books: S. Kumaresan, A Course in Differential Geometry and Lie groups, Texts and Readings in Mathematics 22 - Hindustan Book Agency, 2002. Struik, D.T. Lectures on Classical Differential Geometry, Addison - Wesley, Mass. 1950. Kobayashi S. and Nomizu. K. Foundations of Differential Geometry Interscience Publishers, 1963. 					

	 Texts in Mathematics, Springer Verlag, 1978. 5. T.J. Willmore, An Introduction to Differential Geometry, Oxford University Press,(17th Impression) New Delhi 2002. (Indian Print).
Course Outcomes	On completion of the course the student will be able to CO1: understand the concept of Graphs and Level sets-Vector fields CO2: analyze surfaces and Vector field on surfaces CO3: understand Gauss map-Geodesics. CO4: apply Parallel Transport and Weingarten map.

CO/PO	РО								_	PSO	-	
	1	2	3	4	5	6	7	1	2	3	4	5
CO1	S	S	М	М	М	М	S	S	М	М	S	S
CO2	S	S	М	М	S	М	S	S	S	М	S	S
CO3	S	S	М	М	М	S	S	S	М	М	М	S
CO4	S	S	М	М	М	S	S	S	М	М	М	S

Strongly Correlating(S)	-	3 marks
Moderately Correlating (M)	-	2 marks
Weakly Correlating (W)	-	1 mark
No Correlation (N)	-	0 mark

Course Code & Title	19PM313: Measure Theory and Integration								
Class	M.Sc Mathematics	Semester		III					
Cognitive Level	 K1 – Acquire/Remember K2 – Understand K3 – Apply K4 – Evaluate K5 – Analyze 	11							
Course Objectives	 Aim of this course is to introduce the concepts of measure on real line, integration of non-negative functions, abstract measure spaces, L^p Spaces, Signed measure. 								
Employability and (Skill) Development	Global need	rning and]	Problem						
UNIT	Content]	No. of Hours						
Ι	Measure on real line – Lebesgue outer sets – Regularity measurable Function measurability.			15					
II	(Integration of non-negative functions (integration of series, Riemann and Lebes	Ŭ T	ntegral,	15					
III	(Abstract measure spaces – measures completion of a measure, measure sp respect to a measure.			15					
IV	L ^P spaces – Convex functions, Jenson's soft Holder and Minkowski completeness		alities	15					
V	(Signed measure – Hahn decomposition r product spaces, Fubini's Theorem.	neasurability in a	a	15					
Reference	Text Book: De Barra, Measure Theory and Integration, New Age International PVT Limited UNIT-I: Ch 2 (§2.1-2.5) UNIT-II: Ch 3 (§3.1-3.4) UNIT-III: Ch 5 (§5.1-5.6)								

	John Wiley & Sons, 2000.					
	On completion of the course, students should be able to					
Course	CO 1: acquire the concept of Lebesgue measure, measurable set.					
Outcomes	CO 2: understand the concept of integration of non negative functions.					
	CO 3: demonstrate on Jenson's inequality and Hahn decomposition theorem					
	and					
	Fubini's theorem.					
	CO 4: analyze the properties of L^p spaces.					

CO/PO	РО							-	PSO	-		
	1	2	3	4	5	6	7	1	2	3	4	5
CO1	S	S	S	S	М	М	S	М	М	М	S	S
CO2	S	S	S	S	М	М	S	М	М	М	S	S
CO3	S	S	S	S	М	М	S	М	М	М	S	S
CO4	S	S	S	S	М	М	S	М	М	М	М	S

Strongly Correlating(S)	-	3 marks
Moderately Correlating (M)	-	2 marks
Weakly Correlating (W)	-	1 mark
No Correlation (N)	-	0 mark

Course Code & Title	19PM416 : Functional Analysis	Functional Analysis Percentage of R					
Class	M.sc-Mathematics	Semester	IV				
Cognitive Level	 K1 – Acquire/Remember K2 – Understand K3 – Apply K4 – Evaluate K5 – Analyze 						
Course Objectives	 The Course aims to learn the concepts of normed Sp operator, linear operator on Hilb 	-	-				
Employability and Skill Development	Global need	bal need Participative learning and P solving					
UNIT	Content		No. of Hours				
Ι	Normed Spaces: Examples of Normed Spaces- Banach Sp		13				
II	(Inner Product Spaces, Hilbert Spaces: In Orthogonality- Orthogonal Complements (in Infinite Dimensions)	ner Product-	13 13				
III	Linear Operator: Continuous linear trans normal of a Bounded Linear Operator – and Dual Spaces- Inverses of Operators		12				
IV	Linear Operator on Hilbert Spaces: The a operator- Normal, Self-adjoint and Unita Spectrum of an Operator- Positive operator	ry Operators- The	13				
V	Compact Operators: Compact Operators- Compact Operators- Self-adjoint Compa	- Spectral theory of					
Reference	Text Book: Bryan P.Rynne and Martin A. Youngson Springer-Verlag, 2000. Unit I: Ch 2 (2.1-2.3) Unit II: Ch 3 (3.1-3.4) Unit III: Ch 4 (4.1-4.4) Unit IV: Ch5 (5.1-5.4) Unit V: Ch 6 (6.1-6.3)	, " Linear Functiona	al Analysis",				
	 Reference Books: 1. Bela Bollobas, "Linear Analysis Mathematical textbooks, Cambrid 2. G. F. Simmons, "Introduction to McGraw-Hill, 1963. 3. B.V.Limaye, "Functional Analystical Science Processing Science Processing	dge University Pres Topology and Mod	s, 1990. ern Analysis",				

	 2ndedition, 1985. 4. M. Thamban Nair, "Functional Analysis: A first course", Prentice hall of India, 2002. 5. K. Yosida, "Functional Analysis", Springers-Verlag, 1974. 6. E. Kreyszig, "introductory Functional Analysis with applications", John Wiley, 1978. 7. V.K. Krishan, "Textbook of Functional analysis: A Problem-oriented Approach", Prentice Hall of india, 2004.
Course Outcomes	On completion of the course, students should be able to CO1: understand the concept of Normed Spaces CO2: apply the idea of linear operators and compact operators CO3: evaluate Ortho normal basis CO4:.demonstrate spectral theory

CO/PO	РО								PSO			
	1	2	3	4	5	6	7	1	2	3	4	5
CO1	S	S	S	S	М	S	S	М	S	М	М	S
CO2	S	S	S	S	М	S	S	М	S	М	М	S
CO3	S	S	S	S	М	S	S	М	S	М	М	S
CO4	S	S	S	S	М	S	S	М	S	М	М	S

Strongly Correlating(S)	-	3 marks
Moderately Correlating (M)	-	2 marks
Weakly Correlating (W)	-	1 mark
No Correlation (N)	-	0 mark

Course Code & Title	19PM417: Stochastic Processes								
Class	M.sc-Mathematics	Semester	IV						
Cognitive Level	 K1 – Acquire/Remember K2 – Understand K3 – Apply K4 – Evaluate K5 – Analyze 								
Course Objectives	 The Course aims to learn the concepts of stochastic process with discrete state space stochastic process in queuing an 	, renewal processes ar							
Employability and Skill Development	National need	g and Problem							
UNIT	Content		No. of Hours						
Ι	Stochastic Processes: Some notions – Sp Stochastic processes – Stationary proces – Definitions and examples – Higher Tra Generalization of Independent Bernoulli chain – Dependent trains.	ses – Markov Chains) ansition probabilities –	13						
II	Markov chains: Classification of states a Determination of Higher transition proba Markov system – Reducible chains – Ma continuous state space.	12							
III	Markov processes with Discrete state spa processes and their extensions – Poisson distribution – Generalization of Poisson Death process – Markov processes with (continuous time Markov Chains).	process and related process- Birth and	13						
IV	(Renewal processes and theory : Renewal processes in continuous time – Renewal time – Wald's equation – Renewal theor	12							
V	Stochastic processes in Queuing – Queu concepts – the queuing model M/M/1 – S – transient behaviour of M/M/1 Model – (models - the model GI/M/1.)	ing system – General) Steady state behaviour	12						
Reference	Text Book: J. Medhi, Stochastic Processes, Wiley Ea UNIT- I: Ch 2 (§2.1-2.3) & Ch 3 (§3.1-3) UNIT-II : Ch 3 (§3.4-3.6, 3.8, 3.9) UNIT-III: Ch4 (§4.1-4.5) UNIT- IV: Ch 6 (§6.1-6.5) UNIT-V: Ch 10 (§10.1-10.3, 10.7, 10.8)	3.3)	23, 10.7.2.1,						

	10.7.3.2, 10.7.3.4, 10.8.2))								
	Reference Books:								
	 Samuel Karlin, Howard M. Taylor, A first course in stochastic processes, 2nd edition, Academic Press, 1975. 								
	 Narayan Bhat, Elements of Applied Stochastic Processes, 2nd edn, John Wiley, 1984. 								
	3. S.K. Srinivasan and K.Mehata, Stochastic Processes, Tata McGraw Hill, 1976.								
	4. N.U. Prabhu, Stochastic Processes. Macmillan, 1965.								
	On completion of the course, students should be able to								
	CO1: understand the concept of various specifications of Stochastic								
Course	Processes.								
Outcomes	CO2: apply the idea of Markov chain and Markov Processes to real life								
	problems.								
	CO3: demonstrate on renewal equation, stopping time and renewal theorem.								
	CO4:apply the idea of queuing model to real life problems .								

CO/PO	РО								PSO			
	1	2	3	4	5	6	7	1	2	3	4	5
CO1	S	S	S	S	М	S	S	S	М	S	М	S
CO2	S	S	S	S	М	S	S	S	S	S	S	S
CO3	S	S	S	S	М	S	S	S	S	S	S	S
CO4	S	S	S	S	М	S	S	S	S	S	S	S

Strongly Correlating(S)	-	3 marks
Moderately Correlating (M)	-	2 marks
Weakly Correlating (W)	-	1 mark
No Correlation (N)	-	0 mark

CORE ELECTIVE COURSE (CEC)

Course Code & Title	19PM314a: Fuzzy Mathematics							
Class	M.Sc Mathematics	Semester	III					
Cognitive Level	K-1Acquire/RememberK-2UnderstandK-3ApplyK-4EvaluateK-5Analyze							
Course Objectives	1 0	 The Course aims to help the student to gain the knowledge of the basics of fuzzy set theory, operations on fuzzy sets, fuzzy numbers, fuzzy relation, fuzzy graphs and 						
(Employability) and (Skill) (Development)	Global need	rning and Problem						
UNIT	Content		No. of Hours					
I	Fuzzy set theory: Fuzzy set, Type of definitions and properties of Fuzzy set Solved examples.							
II	Operations on fuzzy sets: Introduction, Se theorems, Extension Principle for Fuzzy s Complements-Some important theorems.	sets, Fuzzy	15					
III	Fuzzy numbers: Algebraic operations wit Binary operation of two Fuzzy numbers, I for L.R representation of Fuzzy sets, Fuzz equations.	Extended operati	ons					
IV	Fuzzy relations and fuzzy graphs: General Projections and Cylindrical Fuzzy relation Properties of Min-Max composition, Bin single set, Solved examples, Compatibili graph, Fuzzy morphisms, Fuzzy relation	ns, Composition, ary relation on a ty relation, Fuzz						
V	Fuzzy logic: An overview of classical log Types of sentences, Truth values and Tru Algebra of Statements, Validity of Argun	th table, Tautolog						

	identities of Crisp logic ,Well formed formulas Predicates and Quantifiers ,Quantifiers and logical operators ,Normal form, Fuzzy logic ,Fuzzy Connectives ,Fuzzy inference.
Reference	Text Book: Sudhir K.Pundir,Rimple Pandir, Fuzzy Sets and their Application, Pragati Prakashan,2008 UNIT- I: Ch 1 (§1.16-1.19) UNIT-II: Ch 2 (§2.1-2.5)
	UNIT- III: Ch 3 (§3.2-3.4,3.6-3.9) UNIT-IV: Ch 4 (§4.1-4.6,4.8,4.9) UNIT-V: Ch 7 (§7.1-7.15) Reference Book: H.J.Zimmermann, Fuzzy set Theory and its Applications, Allied Publishers
	Ltd,New Delhi,1991.
Course Outcomes	On completion of the course, students should be able to CO1: to know the basic Mathematical elements of the theory of fuzzy sets CO2: gain Knowledge about the fuzzy arithmetic and fuzzy number CO3: to understand the difference and similarities between fuzzy sets and classical set theories. CO4: apply the fuzzy logic in real life situation

CO/PO	РО								PSO			
	1	2	3	4	5	6	7	1	2	3	4	5
CO1	S	М	S	М	М	S	М	S	М	М	М	М
CO2	S	М	S	М	М	S	М	S	М	М	М	М
CO3	S	М	S	М	М	S	М	S	М	М	М	М
CO4	S	М	S	М	М	S	М	S	S	S	S	М

Strongly Correlating(S)	-	3 marks
Moderately Correlating (M)	-	2 marks
Weakly Correlating (W)	-	1 mark
No Correlation (N)	-	0 mark

Course Code & Title	19PM314	b : Number Theory	
Class	M.Sc Mathematics	Semester	III
Cognitive Level	K-1Acquire/RememberK-2UnderstandK-3ApplyK-4EvaluateK-5Analyze		
Course Objectives		isibility, congruence, quadra action of number Theory, s	
Employability and Skill Development	Global need	and Problem	
UNIT	Conten	t	No. of Hours
Ι	(Divisibility:Introduction-Divisibilit (Theorem)	y-Primes-The Bionomical	15
П	(Congruence-Solutions of Congruen (Theorem-Techniques of Numerica (Module-Primitive roots and Power		
III	Quadratic Reciprocity and Qu Residues- Quadratic Reciprocity- Quadratic Forms.		
IV	Some Function of Number Theory (Arithmetic) Functions —The Ma (Recurrence Functions.)	15	
V	(Some Diophantine Equations: T (Simultaneous) (Linear) (Equation (Assorted Examples).	[•] he Equation ax+ by=c – ns-Pythagorean Triangles-	
Reference	Text Books: Ivan Nivan, Herbert S.Zuckerman the theory of Numbers, Fifth edition		
	UNIT-I : Ch 1 UNIT-II : Ch 2 (§2.1-2.4, 2.6 &2.8 UNIT-III : Ch 3(§3.1-3.4) UNIT-IV : Ch 4(§4.1-4.4) UNIT-V : Ch 5(§5.1-5.4)	8)	

	Reference Books:
	 David M.Burton, Elementary of Number theory, W.M.C Brown Publishers, Dubuque, Lawa, 1989. William.J.Leveque, Fudamentals of Number theory, Addison-Wesley Publishing Company, Phillipines, 1977. Tom.M.Apostal-Introduction to Analytic Number theory, Narosa, New Delhi.
Course Outcomes	 On completion of the course, students should be able to CO1: attain a broad understanding of divisibility, congruence, greatest common divisor, least common multiple and factoring. CO2: understand certain number theoretic functions and their properties. CO3: apply the law of Quadratic Reciprocity and other methods to classify numbers as primitive roots, quadratic residues and quadratic non-residue. CO4: acquire the mathematical skills required to solve the system of Diophantine equation using Chinese Reminder theorem and Euclidean algorithm.

CO/PO	РО							_	PSO	-		
	1	2	3	4	5	6	7	1	2	3	4	5
CO1	S	S	S	М	М	М	М	S	М	М	М	S
CO2	S	S	S	М	М	S	М	S	М	М	М	S
CO3	S	S	S	М	М	S	М	S	М	М	М	S
CO4	S	S	S	М	М	S	М	S	S	М	S	S

-

-

_

Strongly Correlating(S) Moderately Correlating (M) Weakly Correlating (W) No Correlation (N)

3 marks

2 marks 1 mark

0 mark

Course Code & Title	19PM315a: Graph Theory						
Class	M.sc-Mathematics	Semester	III				
Cognitive Level	 K1 – Acquire/Remember K2 – Understand K3 – Apply K4 – Evaluate K5 – Analyze 						
Course Objectives	 The Course aims to provide the basic concepts of gragraphs, matching, vertex coloring 						
Skill Development	Global need	Participative learn solving	ing and Problem				
UNIT	Content		No. of Hours				
Ι	(Graphs and simple graphs – Graph isomo (Incidence and adjacency Matrices – Sub g (Degrees – Path and Connection – Cycles – (and Bonds – Cut Vertices)	graphs – Vertex	15				
II	(Connectivity – Blocks - Euler tours – Har	nilton Cycles.	15				
III	(Matchings: Matchings and Coverings in E (Edge Chromatic Number – Vizing's Theo	• •	15				
IV	(Independent sets – Ramsey's Theorem – (Brook's Theorem – Chromatic Polynomia		r – 15				
V	(Plane and planar Graphs – Dual graphs – (The Five –colour Theorem and the Four-C		15				
Reference	Text Book: J.A. Bondy and U.S.R. Murthy, Graph London, 1976. UNIT- I: Ch 1 (§1.1 – 1.7) & Ch 2 (§2.1 – 2) UNIT-II: Ch 3 (§3.1& 3.2) & Ch 4 (§4.1 & 3) UNIT-II: Ch 3 (§3.1& 3.2) & Ch 4 (§4.1 & 3) UNIT-III: Ch 5 (§5.1& 5.2) & Ch 6 (§6.1- UNIT-IV: Ch 7 (§7.1 & 7.2) & Ch 8 (§8.1, UNIT- V: Ch 9 (§9.1 – 9.3 & 9.6) Reference Books:	2.3) 2 4.2) -&6.2)	lications, Macmillan,				
	 Clark and D.A.Holton, a First loc New Delhi, 1995. R. Gould, Graph Theory, Benjan 	•					

	 A. Gibbons, Algorithmic Graph Theory, Cambridge University Press, Cambridge, 1989. R.J. Wilson and Watkins, Graphs: An introductory Approach, John Wiley and Sons, New York, 1989. S.A. Choudum, a First Course in Graph Theory, MacMillan India Ltd. 1987.
Course Outcomes	 On completion of the course, students should be able to CO1: understand the definitions namely, cut vertex, bridge, blocks and automorphism group of a graph. CO2: study the properties of trees and connectivity. CO3: idetify Eulerian graphs and Hamiltonian graphs. CO4: understand the concepts planarity including Euler identity, matchings and colorings.

CO/PO) PO								PSO			
	1	2	3	4	5	6	7	1	2	3	4	5
CO1	S	М	S	М	М	S	М	S	S	S	S	М
CO2	S	М	S	М	М	S	М	S	S	S	S	М
CO3	S	S	S	М	М	S	М	S	S	S	S	М
CO4	S	S	S	М	М	S	М	S	S	S	S	М

Strongly Correlating(S)	-	3 marks
Moderately Correlating (M)	-	2 marks
Weakly Correlating (W)	-	1 mark
No Correlation (N)	-	0 mark

Course Code & Title	19PM315b: Numerical Analysis							
Class	M.Sc-Mathematics	Semester	III					
Cognitive Level	 K1 – Acquire/Remember K2 – Understand K3 – Apply K4 – Evaluate; K5 – Analyze 							
Course Objectives	 The Course aims to know the theory behind various apply these methods to solve methods to solve methods. 							
Employability and Skill Development	Global need	Participative learn solving	ing and Problem					
UNIT	Content		No. of Hours					
Ι	Transcendental and Polynomial Equation convergence – Iterative Methods – Poly Bridge – Vista method, Barstow's methor squaring method.	nomial Equations:	15					
II	System of linear algebraic equations and Problems: Error Analysis of direct and i Finding Eigen values and Eigen vectors methods.	teration methods –	15					
III	Interpolation and Approximation: Herm Piecewise and Splice Interpolation – Vie Approximation – least square approximation	cariate Interpolation	15					
IV	Differentiation and Integration: Numeric optimum choice of step – length Extrapo Partial Differentiation – Methods based coefficients – Gauss Methods.	olation methods –	15					
V	Ordinary Differential Equations: Local t Euler, Backward Euler, Midpoint, Taylo second orders Runge – kutta method – s	or's Method and	15					
	Text Book:							
Reference	M. K. Jain, S. R. K. Iyengar and R. K. J Methods for Scientific and Engineering Edition, Wiley Easten Ltd, 1993.							
	UNIT-I: Ch2(§2.5-2.8) UNIT-II : Ch 3 (§3.1-3.5)							

	UNIT-III: Ch 4 (§4.5-4.9) UNIT-IV: Ch 5 (§5.2-5.5 & 5.8) UNIT-V: Ch 6 (§6.2, 6.3 & 6.6 Reference Book :	
	 Kererence Book . Kendall E. Atkinson, "An Introduction to Numerical Analysis", 2nd Edition, John Wiley & sons, 1998 M. K. Jain, "Numerical Solution of Differential Equations", 2nd Edition, NewAge Interanational Pvt Ltd, 1983 Samuel D.Conte, Carl De Boor, "Elementary Numerical Analysis", McGraw-Hill International Edition, 1983. 	
Course Outcomes	 On completion of the course, students should be able to CO 1: obtain the solutions of transcendental and polynomial equations. CO 2: apply direct methods and iteration methods for solving system of equations. CO 3: apply Hermit interpolation, piecewise and spline interpolation. CO 4: solve problems using interpolation and ordinary differential equations. 	

CO/PO		РО							-	PSO	-	
	1	2	3	4	5	6	7	1	2	3	4	5
CO1	S	М	S	М	S	М	S	S	М	М	S	М
CO2	S	М	S	М	S	М	S	S	М	М	S	М
CO3	S	М	S	М	S	М	S	S	М	М	S	М
CO4	S	S	S	М	S	S	S	S	S	М	S	М

Strongly Correlating(S)	-	3 marks
Moderately Correlating (M)	-	2 marks
Weakly Correlating (W)	-	1 mark
No Correlation (N)	-	0 mark

Course Code &Title	19PM418a: Optimization Techniques							
Class	M.Sc Mathematics	IV						
Cognitive Level	K1 – Acquire/Remember K2 – Understand K3 – Apply K4 – Evaluate K5 – Analyze							
Course Objectives	 provide the knowledge of various optimization techniques like integer programming, dynamic programming, decision theory and games, inventory models, non-linear Programming algorithms 							
Employability and Skill Development	National need	National need Participative learning and Problem solving						
UNIT	Content	No. of Hours						
Ι	Integer Programming	15						
II	Dynamics (Multistage) Programming 15							
III	Decision Theory and Games.		15					
IV	Inventory Models		15					
V	Non-Linear Programming algorithms		15					
	Text Book:							
Reference	 Hamdy A. Taha, Operations Research (4 Delhi.2002. UNIT-I: Ch 8 (§8.1-8.5) UNIT-II : Ch 9 (§9.1-9.5) UNIT-III : Ch 11 (§11.1-11.4) UNIT-IV : Ch 13 (§13.1-13.4) UNIT-V : Ch 19 (§19.1& 19.2) Reference Books: O.L. Mangesarian, Non Linear I Mokther S.Bazaraa and C.M. S and Algorithms, Willy, New Ya Premkumar Gupta and D.S. Hin 	Programming, TMH, hetty, Non Linear Pr ark.	New Yark. ogramming, Theory					

	Introduction, S. Chand and Co., Ltd. New Delhi.
	 S.S.Rao, Optimization theory and Applications, Wiley Eastern Ltd, New Delhi.
Course Outcomes	 On completion of the course, students should be able to CO1: understand the concept of integer programming and dynamic programming. CO2: analyse the problems based on decision theory and game theory. CO3: get optimize inventory models. CO4: evaluate non-linear programming problems.

CO/PO	РО							-	PSO	-		
	1	2	3	4	5	6	7	1	2	3	4	5
CO1	S	М	S	М	М	S	S	S	М	S	S	М
CO2	S	М	S	М	М	S	S	S	М	S	S	М
CO3	S	М	S	М	М	S	S	S	М	S	S	М
CO4	S	М	S	М	М	S	S	S	S	S	S	М

Strongly Correlating(S)	-	3 marks
Moderately Correlating (M)	-	2 marks
Weakly Correlating (W)	-	1 mark
No Correlation (N)	-	0 mark

Course Code & Title	19PM418b: Probability Theory	e of re	vision : 100%			
Class	M.Sc Mathematics		IV			
Cognitive Level	 K1 – Acquire/Remember K2 – Understand K3 – Apply K4 – Evaluate K5 – Analyze 					
Course Objectives	 The Course aims to provide the knowledge of the Pro MGF, characteristics function, di 					
Employability and Skill Development	Global need	Participative lea solving	arning	and Problem		
UNIT	Content			No. of Hours		
Ι	Random Events and Random Variables Probability (axioms-Combinatorial) (for probability – Bayes Theorem – Indepe Variables – Distribution Function – Marginal Distribution –Conditional Distri	15				
II	random variables – Functions of random Parameters of the Distribution - Expectat Chebyshev Inequality - Absolute momen – Moments of random vectors – Regressi second types.	15				
III	Characteristic functions - Properties of cl – Characteristic functions and moments - characteristic function of the sum of the i variables – Determination of distribution Characteristic function – Characteristic function multidimensional random vectors – Prob functions.	15				
IV	Some Probability distributions - One Binomial – Polya – Hypergeometric distributions – Uniform – normal gamma Laplace (continuous) distributions.	15				
V	Limit Theorems - Stochastic convergence – Bernaulli law of large numbers Convergence of sequence of distribution functions – Levy-Cramer Theorems – de Moivre-Laplace Theorem – Poisson, Chebyshev, Khintchine Weak law of large numbers – Lindberg Theorem – Lapunov Theroem – Borel- Cantelli Lemma - Kolmogorov Inequality and Kolmogorov Strong Law of large numbers.					

	Text Book: M. Fisz, Probability Theory and Mathematical Statistics, John Wiley and Sons, New York, 1963. UNIT-I: Ch 1 (§1.1 to 1.7), Ch 2 (§2.1 to 2.9) UNIT-I: Ch 2 (§2.1 to 2.9)
	UNIT-II: Ch 3 (§3.1 to 3.8) UNIT-III: Ch 4 (§4.1 to 4.7) UNIT-IV: Ch 5 (§5.1 to 5.10) UNIT-V :Ch 6 (§6.1 to 6.4, 6.6 to 6.9, 6.11 & 6.12)
Reference	Reference Books:
	 R.B. Ash, <i>Real Analysis and Probability</i>, Academic Press, New York, 1972 K.L.Chung, <i>A course in Probability</i>, Academic Press, New York, 1974. K.R. Parthasarathy, Introduction to Probability and measure, Texts and Readings in Mathematics 22, Hindustan Book Agency, 2002. R.Durrett, <i>Probability : Theory and Examples</i>, (2nd Edition) Duxbury Press, New York, 1996. V.K.Rohatgi <i>An Introduction to Probability Theory and Mathematical Statistics</i>, Wiley Eastern Ltd., New Delhi, 1988(3rd Print). P. Billingsley, Probability and Measure, John Wiley, 1985. B.R.Bhat , <i>Modern Probability Theory</i> (3rd Edition), New Age International (P)Ltd, New Delhi, 1999 J.P. Romano and A.F. Siegel, <i>Counter Examples in Probability and Statistics</i>, Wadsworth and Brooks / Cole Advanced Books and Software, California, 1968.
Course Outcomes	On completion of the course, students should be able to CO1: acquire the knowledge of random variables, distribution. CO2: understand the concept of expectation, characteristics function. CO3: demonstrate on Chebyshev inequality and various distributions CO4: apply limit theorems to analyze stochastic convergence.

CO/PO		РО								PSO		
	1	2	3	4	5	6	7	1	2	3	4	5
CO1	S	S	S	М	М	М	S	S	М	М	М	М
CO2	S	S	S	М	М	М	S	S	S	М	М	М
CO3	S	S	S	М	М	S	S	S	М	S	S	М
CO4	S	S	S	М	S	S	S	S	S	М	М	М

Strongly Correlating(S)-Moderately Correlating (M)-Weakly Correlating (W)-No Correlation (N)-

3 marks

2 marks

1 mark

0 mark

-

Course Code & Title	19PM419a - Coding Theory							
Class	M.Sc Mathematics	Semester	IV					
Cognitive Level	K-1Acquire/RememberK-2UnderstandK-3ApplyK-4EvaluateK-5Analyze							
Course Objectives	 The Course aims to provide the concept of linear Block Codes, Cyclic Codes, Rings and Polynomials, Cyclic Codes, Rings and Polynomials, Bounds on codes. 							
E <mark>mployability</mark>	Global need	rning and Problem						
UNIT	Content	No. of Hours						
Ι	Linear Block Codes: Basic Definitions, T Description of Linear Block codes, thepa Dual Codes, Error Deletion and Correct Channels, Weight, Distributions of Codes	and) Input						
Ш	Hamming Codes and their codes, Performance of linear codes, 15 Modifications to Linear Codes, Best Known Linear Block 15 Codes 15							
III	Cyclic Codes, Rings and Polynomials: Definitions, Rings, Quotient Rings, Ideals Description of Cyclic Codes, Nonsyster Parity Check, Systematic Coding,	braic						
IV	Some Hardware Background, Cyclic Enco Decoding.	15						
V	Bounds on codes: The Gilbert – Vars Poltkin Bound, The Griesmer Bo Programming and Related Bound, the M Rumsey-Welsch Bound.	inear						

	Text Books:								
	Toddk.Moon, Error Correction Coding Mathematical Methods and Algorithms,								
	Wiley Interscience & John Wiley & Sons, INC., publications,2005								
	UNIT-I : Ch 3(3.1-3.4)								
	UNIT-II: Ch 3 (3.5-3.10),								
	UNIT-III: Ch 4 (4.1-4.8)								
	UNIT-IV: Ch 4(4.9-4.11)								
	UNIT-V: Ch 9 (9.1-9.5).								
	Reference Books:								
Reference									
	1. S.J.Macwilliams and N.J.A. Slone, The theory of Error-Correcting								
	Code, Amster Bam, North Holland, 1977.								
	2. Raymond Hill, A First Course in Coding Theory, Clarendon Press,								
	Oxford, 1986.								
	On completion of the course, students should be able to								
	CO1: apply linear block codes for error deduction and correction.								
	CO2: understand the importance in the design of codes.								
Course	CO3: apply the tools of linear algebra to construct special type of codes.								
Outcomes									
	CO4: use algebraic techniques in designing coefficient and reliable data								
	transmission methods.								

CO/PO		РО						PSO				
	1	2	3	4	5	6	7	1	2	3	4	5
CO1	S	М	S	М	S	S	W	S	М	W	М	М
CO2	S	М	S	М	S	S	W	S	М	W	М	М
CO3	S	М	S	М	S	S	W	S	S	М	S	М
CO4	S	S	S	М	S	S	W	S	М	М	S	М

Strongly Correlating(S)	-	3 marks
Moderately Correlating (M)	-	2 marks
Weakly Correlating (W)	-	1 mark
No Correlation (N)	-	0 mark

Course Code											
& Title	19PM419b: F	Iuid Dynamics									
Class	M.Sc Mathematics	Semester	IV								
Cognitive Level	K - 1Acquire/RememberK - 2UnderstandK - 3ApplyK - 4EvaluateK - 5Analyze										
Course Objectives	 The Course aims to give the students an introduction t give the students a feel of the appanalysis of flow of fluids. 										
Employability	Global need	Participative learning solving	and Problem								
UNIT	Content	SOLVING	No. of Hours								
Ι	Kinematics of Fluids in Motion: Real Flu Velocity of a fluid at a point – Streamlin Steady and Unsteady flows – The Veloci vorticity vector – Local and Particle rates equation of continuity – Worked Exampl fluid.	tes and Path lines : ty Potential – The s of change – The	15								
II	Equations of Motion of a Fluid: Pressure rest – Pressure at a point is a moving fluid of motion – Bernoulli's equation - Discus steady motion under Conservative Body Potential theorems – Impulsive motion,	d – Euler's Equations ssion of the case of	15								
III	Some Three-dimensional Flows: Sources Images in rigid infinite plane – mage Axisymmetric flour; Stoke's stream func	es in solid spheres -	15								
IV	Some Two-dimensional Flows: The St complex potential for two dimen incompressible flow – Complex vel standard two dimensional flows – some Two dimensional image systems – The I theorem – The theorem of Blasis.										
V	Viscous Flow: Stress components in a F between Cartesian components of st Motion of Fluid element – The Rate of Principal Stresses – Some Further prop Strain Quadric - Stress Analysis in Flui	tress) - (Translational of Strain Quadric and perties of the Rate of									

	between stress and Rate of strain – The Co-efficient of viscosity and Laminar Flow – The Navier – Stokes Equations of Motion of a viscous Fluid-Some solvable problems in Viscous flow.
Reference	 Text Books: F. Chorlton, Text Book of Fluid Dynamics, CBS Publishers & Distributors, Delhi 1985. UNIT-I: Ch 2 (§2.1 – 2.9) UNIT-I: Ch 3 (§3.1, 3.2, 3.4 – 3.8 & 3.11) UNIT-II: Ch 4 (§4.2 – 4.5), UNIT-IV: Ch 5 (§5.1 – 5.9) UNIT-V: Ch 8 (§8.1 – 8.10) Reference Books: H. Schlichting, Boundary Layer Theory, Me Grow Hill Co, New York, 1979. R.K. Rathy, An Introduction to Fluid Dynamics, Oxford and IBH Pub. Co., New Delhi, 1976. William F. Hughes and John A. Brighton, Fluid Dynamics (Schaum's Outlines), 2nd Ed., TMH, 1967. J.D. Anderson, Computational Fluid Dynamics, the Basics with Applications, TMH, 1995. A.J. Chorin and A. Marsden, A Mathematical Introduction to Fluid Dynamics, Springer verlag, New Delhi, 1993
Course Outcomes	 On completion of the course, students should be able to CO1: understand the behavior of fluids in motion. CO2: understand the potential theorems of fluid flow CO3: apply the concept of complex analysis in the analysis of the flow of liquids. CO4: analyze the concept of sources, sinks & doublets and two dimensional flows.

CO/PO		РО							PSO					
	1	2	3	4	5	6	7	1	2	3	4	5		
CO1	S	М	S	М	S	М	М	S	М	М	S	М		
CO2	S	М	S	М	S	М	М	S	М	М	S	М		
CO3	S	S	S	М	S	S	М	S	М	М	S	М		
CO4	S	М	S	М	S	S	М	S	М	М	S	М		

Strongly Correlating(S)	-	3 marks
Moderately Correlating (M)	-	2 marks
Weakly Correlating (W)	-	1 mark
No Correlation (N)	-	0 mark

OPEN ELECTIVE COURSE

Course Code & Title	19PM210a:OEC-1Mathematica	l Modeling And	l Simulation							
Class	Open to all(except Maths Major)	Semester	п							
Cognitive Level	K-1Acquire/RememberK-2UnderstandK-3ApplyK-4EvaluateK-5Analyze									
Course Objectives	The Course aims to • learn the concepts of math	nematical mode	ling and simulation							
Employability		Participative leases olving	rning and Problem							
UNIT	Content		No. of Hours							
Ι	Statistical Models in Simulation: Review of And Concepts – Useful Statistical Model – Distributions – Continuous Distributions – Empirical Distributions.	Discrete								
II	Queueing Models: Characteristics of Q Queueing Notations – Transient and Stead of Infinite –.Long – Run Measures of Queueing Systems.	ly –State Beha	viour							
III	Queueing Models: Steady –State Beha populations Markovian Models –Steady Finite Population Models (M/M/C/K/K) - 1	State Behavior	ur of							
IV	Random –Number Generation: Prope Numbers – Generation of Pseudo - F Techniques for Generating random Nu random Numbers.	Random Numb	ers –							
V	Random – Variate Generation: Inverse Tra Direct Transformation for the norm Convolution Method Acceptance Reje Technique	nal distributio	n 😑							
	Text Books: Jerry Banks, John S.Carson, Barry l.Nelso	n, Discrete – Ev	vent system Simulation,							

Reference	Second edition, Prentice – Hall of India, 1998.
	UNIT-I: Ch 6 UNIT-II: Ch 7(§7.1-7.4) UNIT-III: Ch 7(§7.5-7.7) UNIT-IV : Ch 8 UNIT-V: Ch 9 Reference Books: • Geoffrey Gordon, System Simulation, Second edition, Prentice Hall of
	India, New Delhi, 1995.
	On completion of the course, students should be able to do
Course Outcomes	CO 1: acquire the role of discrete and continuous distributions in simulation CO 2:understand the steady state behavior of queuing models CO 3: evaluate the performance measures of queuing system CO 4: demonstrate on random number and variate generation

CO/PO	РО							PSO				
	1	2	3	4	5	6	7	1	2	3	4	5
CO1	S	S	W	W	S	W	S	М	М	М	М	S
CO2	S	S	W	W	S	W	S	М	М	М	М	S
CO3	S	М	W	W	S	W	S	М	М	М	М	S
CO4	S	М	W	W	S	W	S	М	S	М	S	S

Strongly Correlating(S)-Moderately Correlating (M)-Weakly Correlating (W)-No Correlation (N)-

- 3 marks
- 2 marks
- 1 mark

0 mark

Course Code & Title	19PM210b:O	FC 2	Statistics								
Class	Open to all(except Maths Major)	1	Semester		II						
Cognitive Level	K - 1Acquire/RememberK - 2UnderstandK - 3ApplyK - 4EvaluateK - 5Analyze										
Course Objectives	 Fhe Course aims to gain the knowledge of data collection and classification, measures of dispersion, correlation and regression test the data for goodness of fit analyze data using chi square statics 										
Employability	Local need		ticipative lear	rning a	and Problem						
UNIT	Content	No. of Hours									
Ι	and Diagrammatic Representation of I Diagram, Histogram, Frequency Polygo Gives- Measures of Central Tenden Mode in Series of Individual Obse	Collection, Classification and Tabulation of data –Graphical and Diagrammatic Representation of Data-Bar Diagrams, Pie Diagram, Histogram, Frequency Polygon, Frequency curve and Gives- Measures of Central Tendency-Mean, Median and Mode in Series of Individual Observation, Discrete and Continuous Series, More than Frequency, Less than Frequency, Mid value and Open End Class.									
II	Measures of Dispersion- Range, Quartil Deviation about an average, Standard D Coefficient of Variation for Individual, Continuous type data.	eviation	on and		15						
III	Correlation-Different types of Correlat Simple, Multiple, Linear and Non Line of Correlation- Karl Pearson's and S Concurrent Deviation Method.	15									
IV	Regression Types and Method of Ana Regression Equations, Derivation taker of X and Y, Derivation taken from Assu Multiply Regression Coefficients- Appl	15									

V	Chi-Square tests for Variance, Goodness of fit (Expected frequencies are equal or in a specified proportion only) and independence of attributes F test for equality of two Variances, Analysis of Variance- One way, Two Way and Latin Square design.15
Reference	 Text Books: S.C.Gupta and V.K.Kapoor, Fundamentals of Statistics, Sultan Chand and Sons New Delhi 1994. S.C.Gupta, Fundamentals of Statistics, 6th Revised and Enlarged Edition, Himalaya Publishing House. UNIT-I : Ch4(§4.1-4.4), Ch 5(§5.1-5.8) of (1) UNIT-II : Ch6(§6.4-6.9,6.12)of(1) UNIT-III : Ch6(§6.4-6.9,6.12)of(1) UNIT-IVI : Ch 8(§8.1-8.4,8.7,8.8) of (1) UNIT-IV : Ch 9(§9.1-9.4) of (1) UNIT-V : Ch18(§18.1,18.2,18.4-18.6) of (2)
	 Reference Books: 1. J.E. Freund, Mathematical Statistics, Prentice Hall of India. 2. A.M. Goon, M.K. Gupta, B.Dos Gupta, Fundamentals of Statistical,
	Vol – I, World Press, Calcutta, 1991. On completion of the course, students should be able to
Course Outcomes	CO 1: represent data diagrammatically CO 2: evaluate measures of dispersion CO 3: apply correlation and regression analysis CO 4: demonstrate on analysis of variance

CO/PO	РО						PSO					
	1	2	3	4	5	6	7	1	2	3	4	5
CO1	S	S	S	М	S	М	S	М	М	М	М	S
CO2	S	S	S	М	S	М	S	М	М	М	М	S
CO3	S	М	S	М	S	М	S	М	М	М	М	S
CO4	S	М	S	Μ	S	Μ	S	Μ	S	Μ	S	S

Strongly Correlating(S)	-	3 marks
Moderately Correlating (M)	-	2 marks
Weakly Correlating (W)	-	1 mark
No Correlation (N)	-	0 mark