NEHRU MEMORIAL COLLEGE (Autonomous)

(Nationally accredited with A grade)
PUTHANAMPATTI

PG & RESEARCH DEPARTMENT OF MATHEMATICS

UG COURSE STRUCTURE & SYLLABI (CBCS)

(For the candidates admitted from 2015-2016 onwards)

NEHRU MEMORIAL COLLEGE (Autonomous) Under Graduate Programme Course Structure(CBCS) (For the candidates admitted from 2015-2016 onwards)

PAR T	COURSES	NO. OF COURSES	NO. INST. HRS.	TOT. CREDITS	REMARKS
I	TAMIL	4	24	12	I-IV SEMESTER
II	ENGLISH	4	24	12	I-IV SEMESTER
III	MAJOR/CORE	14	78	64	I-VI SEMESTER
III	ELECTIVE	2	11	10	V, VI SEMESTER
Ш	ALLIED- I YR	3	14	12	I,II SEMESTER
III	ALLIED- II YR	3	17	12	III, IV SEMESTER
IV	SKBC	2	4	4	SKBC 1 – II SEMESTER
					SKBC 2 – III SEMESTER
IV	NMEC	1	4	4	V SEMESTER
IV	COMPREHENSIVE COURSE	1	-	4	VI SEMESTER
IV	SOFT SKILL	1	-	4	IV SEMESTER
IV	GENDER STUDIES	1	-	1	III SEMESTER
IV	VALUE EDUCATION	1	2	1	I SEMESTER
IV	ENVIRONMENTAL STUDIES	1	2	1	II SEMESTER
V	EXTN. ACTIVITIES	1	-	1	-
	TOTAL	39	180	140	

NEHRU MEMORIAL COLLEGE (Autonomous) Under Graduate Programme(Mathematics)-Course Structure CBCS For the candidates admitted from 2015-2016 onwards

					Marks		
Sem	Part	Title of Course	Hrs / Week	Credits	Int (25)	Ext (75)	Total (100)
	I	LC I Tamil I	6	3	25	75	100
	II	ELC I English I	6	3	25	75	100
	III	CC I	5	4	25	75	100
I	III	CC II	4	4	25	75	100
	III	AC I	4	4	25	75	100
	III	AC II Lab	3	-	-	-	-
	IV	VE Value Education	2	1	-	100	100
	Total	7 3	60	19	125	475	600
	I	LC II Tamil II	6	3	25	75	100
	II	ELC II English II	6	3	25	75	100
	III	CC III	7	5	25	75	100
II	III	AC II Lab	3	4	25	75	100
	IIIL	AC III	4	4	25	75	100
	IV	ES Environmental Science	2	1	-	100	100
	IV	SKBC I	2	2	-	100	100
	Total		0	22	125	575	700
	I	LC III Tamil III	6	3	25	75	100
	II	ELC III English III	6	3	25	75	100
	III	CC IV	5	5	25	75	100
III	III	AC IV	6	4	25	75	100
	III	AC V	5	4	25	75	100
	IV	SKBC II	2	2	-	100	100
	IV	GS Gender Studies		1	-	100	100
	Total		0	22	125	575	700
	I	LC IV Tamil IV	6	3	25	75	100
	II	ELC IV English IV	6	3	25	75	100
TX7	III	CC V	6	5	25	75	100
IV	III	CC VI	6	5	25	75	100
	III	AC VI	6	4	25	75	100
	IV	SS Soft Skill		2	-	100	100
	Total		0	22	125	475	600
	III	CC VII	5	5	25	75	100
	III	CC VIII	5	5	25	75	100
	III	CC IX (T/L)	6	4	25	75	100
V	III	CC X	5	4	25	75	100
	III	EC I	5	5	25	75	100
	IV	NMEC	4	4	_	100	100
	Total		0	27	125	475	600
	III	CC XI	6	5	25	75	100
	III	CC XII	6	4	25	75	100
X77	III	CC XIII	6	5	25	75	100
VI	III	CC IV	6	4	25	75	100
	III	EC II	6	5	25	75	100
	IV	CH Comprehensive		4	-	100	100
	Total		0	27	125	475	600
	V	Extension Activities	400	1	7.0	20.70	2000
		TOTAL	180	140	750	3050	3800

NEHRU MEMORIAL COLLEGE (Autonomous)

Under Graduate Programme (Mathematics)-Course Structure CBCS For the candidates admitted from 2015-2016 onwards

Sem	Code	Part	Title of Course	Hrs/Wk	Cr		Marks	
						Int	Ext	Tot
	15T101	I	LC I -Tamil I	6	3	25	75	100
	15H101	II	ELC II-English I	6	3	25	75	100
	15M101	III	CC I- Calculus	5	4	25	75	100
I	15M102	III	CC II-Trigonometry and Algebra	4	4	25	75	100
	15M103A	III	AC I- Allied Physics- I	4	4	25	75	100
	15M104L	III	AC II –Allied Physics Lab*	3	-	-	-	-
	15VED	IV	VE Value Education	2	1	-	100	100
		Total	7 30		19	125	475	600
	15T202	I	LC II -Tamil II	6	3	25	75	100
	15H202	II	ELC II -English II	6	3	25	75	100
	15M205	III	CC III Differential Equations, Applications and Laplace Transforms	7	5	25	75	100
II	15M104L	III	AC II – Physics Lab*	3	4	25	75	100
	15M206A	III	AC III- Allied Physics- II	4	4	25	75	100
	15EVS	IV	ES Environmental Science	2	1	-	100	100
	15XM21L	IV	SKBC I- MS Office	2	2	-	100	100
		Total	7 30	•	22	125	575	700
	15T303	I	LC III-Tamil III	6	3	25	75	100
	15H303	II	ELC III-English III	6	3	25	75	100
	15M307	III	CC IV- Analytical Geometry & Summation of Series	5	5	25	75	100
III	15M308A	III	AC IV- Probability and Statistics I	6	4	25	75	100
	15M309A	III	AC V - Probability & Statistics II	5	4	25	75	100
	15XM32L	IV	SKBC II – SCILAB	2	2	-	100	100
	15GS	IV	GS Gender Studies		1	-	100	100
		Total	7 30	1	22	125	575	700
	15T404	I	LC IV-Tamil IV	6	3	25	75	100
	15H404	II	ELC IV-English IV	6	3	25	75	100
	15M410	III	CC V -Vector Calculus, Fourier Series &Fourier Transforms	6	5	25	75	100
IV	15M411	III	CC VI – Real Analysis I	6	5	25	75	100
	15M412AL	III	AC VI - R Programming Lab	6	4	25	75	100
	15SSC	IV	SS- Soft Skill Course		2	-	100	100
		Total	6 30		22	125	475	600
	15M513	III	CC VII- Modern Algebra	5	5	25	75	100
	15M514	III	CC VIII- Real Analysis II	5	5	25	75	100
	15M515	III	CC IX Graph Theory	6	4	25	75	100
V	15M516	III	CC X- Discrete Mathematics	5	4	25	75	100
	15M517*	III	ECI	5	5	25	75	100
	15M5N	IV	NMEC: Quantitative Aptitude	4	4	-	100	100
		Total	6 30		27	125	475	600
	15M618	III	CC XI – Complex Analysis	6	5	25	75	100
	15M619	III	CC XII- Mechanics	6	4	25	75	100
	15M620	III	CC XIII- Number Theory	6	5	25	75	100
VI	15M621 T/L	III	CC IV (T/L) – Programming in JAVA with Lab	6	4	25	75	100
	15M622*	III	EC II	6	5	25	75	100
_	15MC	IV	CH -Comprehensive Course		4		100	100
		Total	630		27	125	475	600
		V	EA Extension Activities		1			
TOT	ΓAL			180	140	750	3050	3800

*EC Electives:

	Dicctives	'•
Sem	Code	Course
V	15M517b	Fuzzy Theory
	15M517a	Numerical Methods
VI	15M622c	Astronomy
	15M622b	Mathematical Modeling
	15M622a	Operations Research

NEHRU MEMORIAL COLLEGE(AUTONOMOUS) Puthanampatti, Trichy District

SYLLABUS REVISION 2014-2015

Department : MATHEMATICS

Academic Programme offered : **B.Sc.**

Year of Implementation : 2015-2016

OBE ELEMENTS

Programme Educational Objectives (PEO)

- **PEO 1:** To qualify the students to become successful professionals by demonstrating logical and analytical thinking abilities.
- **PEO 2:** To provide knowledge in the breadth and depth of mathematics, including the connections between different areas of mathematics.
- **PEO 3:** Gain experience investigating the real world problems and learn how to apply mathematical ideas and models to those problems.
- **PEO 4:** Analyze the use of computer technology to solve problems and to promote understanding.

Program Outcome (PO)

- **PO 1:** Become knowledgeable in the subject of Mathematics and apply the principles of the same to the needs of the Employer/Institution/Enterprise/Society.
- **PO 2:** Gain analytical skills in the field of Mathematics
- **PO 3:** Understand and appreciate professional ethics, community living and Nation Building initiatives.
- **PO 4:** To develop important analytical and logical skills and problem solving strategies to assess a broad range of issues in real life.
- **PO 5:** To expose a wide range of modern mathematical ideas from pure and applied mathematics to graduate with both technical and quantitative skills that are in demand in the modern world.
- **PO 6:** To acquire mathematical knowledge and understanding in advanced areas of mathematics from the given courses that provides a solid foundation for future learning.

Programme Specific Outcome (PSO)

- **PSO 1:** Apply the knowledge of Mathematics in the domain of Science, Engineering and Technology
- **PSO 2:** Solve the complex problems in the field of mathematics with an understanding of the societal, legal and cultural impacts of the solution.
- **PSO 3:** Familiar with a variety of examples where mathematics helps accurately explain abstract or physical phenomena.
- **PSO 4:** Able to independently read mathematical literature of various types, including survey articles, scholarly books, and online sources.
- **PSO 5:** Life-long learners who are able to independently expand their mathematical expertise when needed, or for interest's sake.
- **PSO 6 :** Recognize the importance and value of mathematical and statistical thinking, training and approach to problem solving, on a diverse variety of disciplines.

Course Code & Title	15M10 CCI - Cal	· -	Percentage of Revision : 5%		
I B.Sc. Mathematics	Semester : I	Credits: 4	Hrs/ Wk : 5		
Cognitive Level	K-1-Acquire K-2-Understanding K-3-Apply K-4-Evaluate K-5-Analyze				
Course Objectives	 The Course aims to have a greater understanding of the basic concepts of differential and integral calculus. enable the students to gain the ability to solve the problems related to multiple integrals, Beta and Gamma functions. 				
Employability and Skill Development	Global Need Participative Learning, Problem solving				

UNIT	Content	No. of Hours
I	Successive Differentiation Calculation of the nth derivative — Determination of nth derivative of rational function — The nth derivative of the product of the powers of Sines and Cosines — Leibnitz's theorem — Maxima and minima of the functions of two variables — Concavity and points of inflexion.	15
II	Curvature and Evolutes Curvature – Length of arc as a function – Radius of curvature – Evolutes and involutes.	15
III	Reduction Formulae Reduction Formulae – Integration of sin ⁿ x, cos ⁿ x where n is a positive integer – Integration of sin ^p x, cos ^q x where p and q are positive integers.	15
IV	Multiple Integrals Multiple Integral – Double Integrals – Change of order of Integration – Triple Integrals.	15
V	Beta and Gamma functions Beta and Gamma functions — Properties of Beta functions — Relation between Beta and Gamma functions — Evaluation of the Integrals using Beta and Gamma functions.	15
Reference	 Text Books: Shanthi Narayan and P.K. Mittal, Differential Calcul Company LTD, 2012. Unit I: Ch 5 (5.2-5.5), Ch9 (9.6), Ch 13 (5.2-5.5) Unit II: Ch 14 (Sec: 14.1 - 14.3, 14.7) Shanthi Narayan and P.K. Mittal, Integral Calculus, S. LTD, 2012. 	

	 Unit III: Ch 2 (2.8),Ch 4 (4.1 – 4.3) Unit IV: Ch 12 (12.1, 12.2, 12.4, 12.6) 3. T.K. Manicavachagompillay and T. Natarajan, Calculus, Vol II, S.V. Publishers, 2012. Unit V: Ch 7(2-5) Reference Books: 1. George B. Thomas and Ross L. Finney, Calculus and Analytical Geometry, Sixth Edition, Narosa Publishing House, 1998. 2. T.K. ManicavachagomPillay and T. Natarajan, Calculus, Vol I, S. Viswanathan Printers and publishers Pvt. Ltd., 2012.
Course Outcomes	On completion of the course, students should be able to CO 1: acquire the concept of successive differentiation, maxima and minima of functions of two variables. CO 2: apply the concepts of Beta and Gamma functions to multiple integrals. CO 3: use reduction formula to evaluate integrals. CO 4: evaluate radius of curvature, evolutes and involutes.

Course Code & Title	15M102 CCII – Trigonometry and Alg	gebra	Percentage of Revision: 60%	
I B.Sc. Mathematics	Semester : I	Credits: 4	Hrs/ Wk : 4	
Cognitive Level	K-1 - Acquire K-2 - Understanding K-3 - Apply K-4 - Evaluate K-5 - Analyze			
Course Objectives	 The Course aims to enable the students to gain the knowledge of circular function, hyperbolic function and basic concepts of classical algebra. 			
Employability and Skill Development	Global Need	Problem Solvi	ing	

UNIT	Content	No. of Hours
I	Expansions	12
	Expansions for sinnθ and cosnθ-Expansion for tannθ, Expansion	
	for $\cos^n\theta$ and $\sin^n\theta$ in terms of multiple angles of θ -Expansion of $\sin\theta$ and $\cos\theta$ in ascending powers of θ .	
II	Hyperbolic and Logarithmic functions	12
11	Hyperbolic functions-Invers Hyperbolic functions –Logarithms	12
	of complex numbers-Real and Imaginary parts of log(x+iy) –	
	Logarithm of a negative real number.	
III	Theory of Equations	12
	Relation between the roots and coefficients – Symmetric	
	functions of the roots – Sum of the rth powers of the roots –	
	Transformations of equations – Reciprocal equations – Decreasing and increasing the roots by a constant – Removal of	
	terms.	
IV	Matrices	12
	Consistency – Eigen values and Eigen vectors – Similar matrices	
	- Cayley Hamilton theorem(statement only) - Symmetric, Skew	
	Symmetric, Orthogonal, Hermitian, Skew Hermitian and Unitary	
	matrices(simple problems).	
V	Inequalities	12
	Elementary principles – Geometric and Arithmetic means –	
Reference	Wierstrass' Inequality – Cauchy's Inequality. Text Books:	
Reference	1. P.R.Vittal, Trigonometry, Markham Publication, 1998.	
	Unit I: Ch 5, Unit II: Ch 7, 8 (8.1 - 8.3)	
	2. T.K.ManicavachagomPillay, T.Natarajan, K.S.Ganapathy,	Algebra, Volume I
	S.Viswanathan Printers and Publishers Pvt.Ltd, 2010.	
	Unit III :Ch 6 (6.11 - 6.16)	
	3. T.K.ManicavachagomPillay, T.Natarajan, K.S.Ganapathy, S.Viswanathan Printers and Publishers Pvt.Ltd-2010.	Algebra, volume II

	Unit IV :Ch 2(6.1-6.3, 9.1-9.6), Unit V : Ch 4(1-5,9-11)						
	Reference Books:						
	1. Hall and Knight, Higher Algebra, Fourth edition, Arihant Prakashan, 2012.						
	2. P.Kandasamy and K.Thilagavathy, Mathematics, Volume I, S.Chand and						
	Company Ltd, 2010.						
Course	On completion of the course, students should be able to						
Outcomes							
	CO 1: acquire the knowledge of circular function.						
	CO 2: give illustration of Eigen value and Eigen vector, symmetric,						
	orthogonal and unitary matrix.						
	CO 3: apply the concepts of theory of equations and inequalities.						

Course Code & Title	15M205 CCIII – Differential Equations, Applications Laplace Transforms	ana i	Percentage of Revision : 10%	
I B.Sc. Mathematics	Semester : II	C	Credits :	Hrs/ Wk: 7
Cognitive Level	K-1 - Acquire K-2 - Understanding K-3 - Apply K-4 - Evaluate K-5 - Analyze			
Course Objectives	 The Course aims to enable the student to gain the ability to solve the problems related to first and higher order linear differential equation, partial differential equations and Laplace Transforms. provide the applications of differential equations in various areas. 			
Employability and Skill Development	Global Need Parti Solvi	icipative ing	Learni	ng, Problem

UNIT	Content	No. of Hours
I	First Order Ordinary Differential Equations	21
	Exact Differential Equations – Integrating Factor – Necessary and	
	Sufficient Condition (Without Derivative) – Equations Solvable for	
	p, x & y and Clairauts Equation.	
II	Higher Order Linear Ordinary Differential Equations	21
	Linear Differential Equations with Constant Coefficients and	
	Linear Differential Equations with Variable Coefficients – Linear	
	Equations Reducible to Homogeneous Linear Form – Variation of	
	Parameters – Total Differential Equation – Condition of	
	Integrability.	
III	Partial Differential Equations	21
	Classification of Integrals - General, Particular, Complete and	
	Singular Integrals – Formation of Partial Differential Equation –	
	Four Standard Forms – Lagrange's Equation – Charpit's Method.	
IV	Second Order Partial Differential Equations and Applications	21
	of Differential Equations	
	Second order homogeneous partial differential equations with	
	constant coefficients – Particular Integrals of $F(D,D)=f(x,y)$ where	
	$f(x,y)=e^{ax+by}$, $\sin(ax+by)$, $\cos(ax+by)$ and $x^r.y^s$. Orthogonal	
	Trajectories – Growth and Decay – Continuous Compound Interest	
	 Falling Bodies – Simple Harmonic Motion. 	
V	Laplace Transforms	21
	Definition of Laplace Transform – Laplace Transform of Standard	
	Functions – Inverse Transforms – Solution of Ordinary Differential	
	Equations and Simultaneous Equations – Convolution Theorem.	

Reference	Text Books:		
	1. S. Narayanan and T.K. ManicavchagomPillay, Differential Equations and its		
	Application, S.V. Publications, 2012.		
	Unit I:Ch 2(6.1 – 6.3) &Ch 4; Unit II: Ch 5 (1 – 6) &Ch 11;		
	Unit III: Ch 12 (2,3,4,5.1-5.4,6) Unit V: Ch 9		
	2. S. Arumugam and A. Thangapandi Isaac, Differential Equations		
	anditsApplications ,New Gamma Publication, 2011.		
	Unit IV: Ch 5,6 (6.1-6.3,6.7,6.8)		
	3. H. K. Dass, Advanced Engineering Mathematics, S. Chand Publications, 2009.		
	Unit IV: Ch 9 (9.10-9.12)		
	Reference Books:		
	1. S. Sangarappan, S. Kalavathy, Differential equations and Laplace Transforms,		
	Vijay Nicole imprints private Ltd, Chennai, 2005.		
	2. P.R. Vittal, Differential Equations and Laplace Transforms, Margham		
	Publication, 2004.		
	3. P. Kandasamy, K. Thilagavathy and K. Gunavathy, Engineering Mathematics,		
	S. Chand and Company, 1997.		
Course	On completion of the course, students should be able to		
Outcomes			
	CO 1: acquire the knowledge of the first order ODE, PDE and Laplace		
	Transforms.		
	CO 2: solve the problems choosing the most suitable method.		
	CO 3: model the real world scenario using ODE, PDE.		
	CO 4: sense the essential difference between ODE and PDE.		

Course Code & Title	15XM21L SKBC I – MS Office	Percentage	e of Revision : NIL
I B.Sc. Mathematics	Semester : II	Credits: 2	Hrs/Wk:2
Cognitive Level	K-1 - Acquire K-2 - Understanding K-3 - Apply K-4 - Evaluate K-5 - Analyze		
Course Objectives	The Course aims to • learn and practice MS Office.		
Skill Development	Global Need	Experiential L	earning

UNIT	Content	No. of Hours
I	MS WORD	10
	 Paragraph Formatting 	
	 Newspaper Style Document 	
	 Creation 	
	Mail Merge	
	 Page Formatting and Printing 	
II	MS EXCEL	10
	• Worksheet	
	 Including Formulas 	
	 Formatting Cells 	
	Chart Creation	
	• Functions	
III	MSPOWERPOINT	10
	Creating Presentation	
	Sound Animations	
	Inserting Picture	
Reference	Text Books:	
	S. S. Shrivastava, MS – Office, Mittal Books India, 2015.	
	Reference Books:	2010
	 S. Jain, MS – Office 2007 Training Guide, BPB Publications Dinesh Maidasani, Learning Computer Fund, MS Office an 	-
	Technology, Fire Wall Media, 2015.	d Internet & Web
Course	On completion of the course, students should be able to	
Outcomes	on completion of the course, students should be take to	
0 0.000 0.1110	CO 1: gain the basic knowledge of Microsoft Office.	
	CO 2: understand the ethical issues in saving word processing docum	nents.
	CO 3: apply designs to enhance the looks of the presentation.	
	CO 4: analyze the use of Microsoft word, Excel and PowerPoint.	

Course Code & Title	15M307 CCIV – Analytical Geometry & Summation of Series		Percentage of Revision : 60%
II B.Sc. Mathematics	Semester : III Credits : 5 Hrs/ Wk : 5		
Cognitive Level	K-1 - Acquire K-2 - Understanding K-3 - Apply K-4 - Evaluate K-5 - Analyze		
Course Objectives	 The Course aims to enable the student to gain fundamental ideas about co-ordinate geometry and gives clear knowledge about regular geometrical aspects and their properties in two dimensional and three dimensional analytical geometry and basic skills in the areas of summation series. 		
Employability and Skill	Global Need Participative Learning, Problem		
and Skill Development		solving	

UNIT	Content	No. of Hours
I	Plane The general equation of a plane – Intercepts form – Normal form	15
	 The equations of the plane passing through the three points – Direction cosines of the line which is perpendicular to a plane – 	
	angle between the planes – Equation of a plane through the line of intersection of two given planes – Length of perpendicular – The equation of the planes bisecting the angle between the two planes.	
II	Straight Line Intersection of the two planes – symmetrical form of the equation	15
	of a line – Equation of a straight line passing through two given points – the plane and straight line – angle between the plane and	
	the line - Coplanar lines - The Shortest distance between two	
	given line – The intersection of the three planes – Volume of tetrahedron.	
III	The Sphere Definition – The equation of a sphere –length of the tangent – the plane section of a sphere is a circle – Equation of a circle on a sphere – Equation of a sphere passing through a given circle – Intersection of two sphere is a circle – the equation of the tangent plane.	15
IV	Binomial, Exponential and Logarithmic Series Binomial theorem for a rational index — Application to	15
	summation of series – approximate values – Exponential and logarithmic theorems(without proof) – Applications to summation of series.	

V	Summation of Series 15	
	Summation of series – Applications of partial fractions –	
	Summation by difference series – Recurring Series.	
Reference	Text Books:	
	1. T. K. ManicavachagomPillay, T. Natrajan, A text book of Analytics	al
	Geometry, Part II – Three dimensions, S.Viswanathan (Printers	
	Publishers) Pvt.Ltd., 2010.	
	Unit I: Ch 2 (1-11) Unit II: Ch 3 (1-8,10,11) Unit III: Ch 4(1-8)	
	2. T. K. ManicavachagomPillay, T. Natrajan, K.S. Ganapathy, Algebr	a,
	Volume I, S.Viswanathan (Printers & Publishers) Pvt.Ltd., 2010.	
	Unit IV: Ch 3 (5,6,10,11),Ch 4(2,3,5,7,9,11) Unit V: Ch 5 (1-7)	
	Reference Books:	
	1. SL Loney, The elements of coordinate geometry, Cartesian coordinates, Part	I,
	2012.	
	2. Hall & Knight, Higher Algebra, Fourth edition, Arihant Prakashan, 2012.	
	3. P. Kandasamy and K. Thilagavathy, Mathematics, Vol. I,S. Chand & Compan	ιy
	LTD, 2010.	
Course	On completion of the course, students should be able to	
Outcomes		
	CO 1: recollect the basic concept of equation of a plane, straight line the sphere an	ıd
	binomial, exponential and logarithmic series.	
	CO 2: understanding about the concept of forming a plane of a equation and to fin	ıd
	angle between the plane and line, co-planer lines, volume of tetrahedron.	
	CO 3: get the clear Idea to form a equation of a sphere passing through a give	n
	circle, intersection of two spheres is a circle and the equation of the tangent plane.	
	CO 4: demonstrate the binomial theorem for a rational index, applications	
	summation of series and recurring series.	

Course Code & Title	15M308A ACIV – Probability & Statistics I	Percentag	e of Revision : NIL
II B.Sc. Mathematics	Semester : III	Credits: 4	Hrs/ Wk: 6
Cognitive Level	K-1 - Acquire K-2 - Understanding K-3 - Apply K-4 - Evaluate K-5 - Analyze		
Course Objectives	The Course aims to	iscrete and conti	inuous random variable,
Employability and Entrepreneurship	Global Need	Participative Solving	Learning, Problem

UNIT	Content	No. of Hours
I	Bayes' theorem and Random variables	18
	Classical definition of Probability – Addition theorem – Axioms	
	of probability - Conditional probability - Bayes' theorem -	
	Random Variables - Discrete and continuous random variables -	
	Cumulative distribution – Properties of distribution function –	
	Two dimensional random variable – Marginal probability	
	distribution – Conditional probability distribution – Independent	
	random variables.	
II	Mathematical Expectation and Variance	18
	Expectation – Expectation of function of a random variable –	
	Properties of expected value – Variance mean deviation –	
	Tchebechev's inequality – Conditional expectation.	
III	Moments, Moment generating functions and Characteristic	18
	functions	
	Central moments – Moments about origin – Moment generating	
	function – Characteristic function – Probability generating	
	function – Cumulates.	10
IV	Discrete probability distributions	18
	Binomial, Poisson, Negative Binomial, Hyper geometric and	
	Geometric distributions.	10
V	Continuous Distributions	18
	Normal, Uniform distribution, Exponential, Gamma and Beta	
D 0	distribution.	
Reference	Text Books:	
	P.R. Vittal, Mathematical Statistics, Margham publication, 2012.	
	Unit1: Ch 2	
	Unit2: Ch (3, 4, 7)	
	Unit3: Ch (5, 6)	
	Unit4: Ch (12 – 15)	
	Unit5: Ch (16 – 20)	

	Reference Books:	
	1. S. C. Gupta and V.K.Kapoor, Fundamental of Mathematical statistics,	
	S. Chand and sons, 11 th edition, 2010.	
	2. S. C. Gupta, Fundamental of Mathematical statistics, Himalaya publishing	
	company, 7 th Revised & Enlarged edition, 2014.	
	3. S. P. Gupta, statistical methods, Sultan Chand and co., 1997.	
Course	On completion of the course, students should be able to	
Outcomes		
	CO 1: gain the knowledge of variable and probability distributions.	
	CO 2: understand the basic concepts of discrete and continuous distributions	
	and their properties.	
	CO 3: apply the various distributions suitably to real life problems	
	CO 4: compute expectations, variations and other higher order moments of	
	the distributions.	

Course Code & Title	15M309A ACV – Probability & Statistics II		Percentage of Revision: 50%
II B.Sc. Mathematics	Semester : III	Credits: 4	Hrs/ Wk : 5
Cognitive Level	K-1 – Acquire K-2 – Understanding K-3 – Apply K-4 – Evaluate K-5 – Analyze		
Course Objectives	 The Course aims to introduce various methods of statistical inference. 		
Employability and Entrepreneurship	Global Need	Participative Solving	Learning, Problem

UNIT	Content	No. of Hours
I	Correlation Sample correlation – Ranks correlation – Properties of correlation coefficient – Limitations – Method of calculating Correlation Coefficient – Merit and Demrit.	15
II	Regression and Curve Fitting Derivation of regression lines – Properties of Regression Coefficient – Principle of Least Squares – Fitting a Straight line – Fitting a Second Degree Polynomial – Fitting a Curve of the form y = ae ^{bx} - Fitting a Second Degree Polynomial – Fitting a Curve of the form y = ab ^x – Fitting a Second Degree Polynomial – Fitting a Curve of the form y = ax ^b .	15
III	Multiple and Partial Correlation, Functions of Random Variable Equation of Regression Plane – Multiple Correlation Coefficient – Partial Correlation Coefficient - Expression for Standard Deviation in terms of Standard Deviation of lower order – Relation between Multiple and Partial Correlation Coefficient: Functions of Random Variable – Distribution Function Method – Product of Two Variables – Quotient of Two Variables.	15
IV	Sampling Distributions Sampling Distribution – Sampling Distribution of \overline{X} - Chi Square Distribution –MGF of χ^2 Distribution (β, γ) Coefficients – Characteristic function of (χ^2) Distribution – Mode of (χ^2) Distribution – Additive Properties of (χ^2) Random Variable – to Distribution – Moments of to Distribution – Limiting form of to Distribution – Derivation of the Distribution of $(Z = \frac{1}{2}\log_e F)$ – Moment of F Distribution.	15

V	Estimation 15
•	Point Estimation – Estimate – Unbiased Estimation Efficiency –
	Cramer – Rao Inequality(statement only) – Rao-Black Well
	Theorem (statement only) – Consistent Estimator – Method of
	Maximum Likelihood Estimator – Properties of ML Estimator –
	Minimum Chi Square Estimator – Interval Estimation –
	Confidence Interval of the Mean of the Normal Population –
	Confidence for Proportion – Confidence Interval for the Difference
	between two Proportion(Simple problems only).
Reference	Text Books:
	P.R. Vittal, Mathematical Statistics, Margham Publication, 2012.
	Unit1: Ch 8
	Unit2: Ch (9, 10)
	Unit3: Ch (11, 21)
	Unit4: Ch (22)
	Unit5: Ch (23)
	Reference Books:
	1.S.C.Gupta and V.K.Kapoor, Fundamental of Mathematical Statistics, S.Chand&
	Sons, 11 th Edition, 2010.
	2. S.C.Gupta, Statistical Methods, Sultan Chand and Co.,1997.
	•
Course	On completion of the course, students should be able to
Outcomes	
	CO 1: acquire the knowledge of correlation, regression and sampling
	distributions.
	CO 2: understand the necessity of various techniques for robust statistical
	inference.
	CO 3: apply the concept of estimation to the parameter of sampling
	distributions.
	CO 4: evaluate expectation, variance, mgfs, characteristic functions and
	estimators.

Course Code & Title	15XM32L SKBC II – SCILAB	Percenta	Percentage of Revision: 100%	
II B.Sc. Mathematics	Semester : III	Credits:	Hrs/ Wk : 2	
Cognitive Level	K-1 – Acquire K-2 – Understanding K-3 – Apply K-4 – Evaluate K-5 – Analyze			
Course Objectives	The Course aims to	vare industries. Experiential Lear	rning	
Development	3333411334		8	

UNIT	Content	No. of Hours
	Exercises	30
Reference	Text Books: Michael Baudin, Introduction to SCILAB, The SCILAB Consortium Reference Books: Gilberto E. Urroz, Programming with SCILAB, September 2002.	a, 2010.
Course Outcomes	On completion of the course, students should be able to CO 1: gain knowledge about implementation of simple mathematical functions, equations in numerical computing environment. CO 2: understand the need for simulation /implementation for the verification of mathematical functions. CO 3: apply simple mathematical functions and operations on using plots. CO 4: analyze various SCILAB command.	

Course Code & Title	15M410 CCV – Vector Calculus, Fourier Series & Transforms	Percentage of Revision : NIL	
II B.Sc. Mathematics	Semester : IV	Credits:	Hrs/ Wk : 6
Cognitive Level	K-1 - Acquire K-2 - Understanding K-3 - Apply K-4 - Evaluate K-5 - Analyze		
Course Objectives	 The Course aims to provide the knowledge about Vector differentiation, Vector integration, Fourier series and Fourier transforms. 		
Employability and Skill Development	Global Need	Participative Learning, Problem Solving	

UNIT	Content	No. of Hours
I	Vector Differentiation	18
	Introduction - Scalar and Vector point function - Gradient -	
	Divergence and curl of a vector point function – Vector identities.	
II	Vector Integration	18
	Introduction - Line, Surface and volume Integrals and their	
	evaluation.	
III	Theorems on Vector Integration	18
	Theorems of Gauss, Stoke's and Green's(statement only) -	
	Problems using these three theorems.	
IV	Fourier series	18
	Definition of Fourier series - Fourier series expansion of	
	periodic function of period 2π and $2a$ – Odd and even function-	
	Half range series - Change of interval.	
V	Fourier Transforms	18
	Fourier Transforms - Integral formula - Fourier Integral theorem -	
	Properties of Fourier Transforms – Cosine and Sine Transforms	
	and their properties - Parsaval's identity - Convolution theorem.	
Reference	Text Books:	
	1. P.R. Vittal, V.Malini, Vector Analysis, Margham Publication, 2003.	
	Unit I: Ch 1; Unit II: Ch 2; Unit III: Ch 2	
	2. S.Narayanan, T.K.Manicavachagompillay, Calculus,	Volume 3,
	S. Viswanathan Publishers, 2013.	
	Unit IV : Ch 6 (6.1-6.6) ; Unit V : Ch 6 (6.9.1-6.9.15)	

	Reference Books:		
	1. Jain and Iyengar, Advanced Engineering Mathematics, Second Edition,		
	Narosa Publishing House, 2006.		
	2. Murray R. Spiegel, Vector Analysis, MC Graw - Hill Book Company, 2009.		
Course	On completion of the course, students should be able to		
Outcomes			
	CO 1: acquire the concept of the vector differentiation, vector integration,		
	Fourier series and Fourier Transforms.		
	CO 2: understand the practical utility of gradient, divergent & curl.		
	CO 3: apply the divergence, curl and scalar potential to real life problems.		
	CO 4: evaluate the multiple integrals and Fourier series for periodic function		
	and Fourier Transforms for a periodic functions.		

Course Code & Title	15M411 CC VI – Real Analysis I		Percentage of Revision: 100%
II B.Sc. Mathematics	Semester : IV	Credits: 5	Hrs/ Wk : 6
Cognitive Level	K-1-Acquire K-2-Understanding K-3-Apply K-4-Evaluate K-5-Analyze		
Course Objectives	 The Course aims to gain the basic knowledge of real analysis. impart an in depth knowledge of functions, sequences, infinite series and limit of a function. 		
Employability	Global Need	Participative Solving	Learning, Problem

UNIT	Content	No. of Hours
I	Sets and Functions	18
	Set and functions – Mathematical induction –Finite and Infinite	
	sets –The algebraic and order properties of R-absolute value and	
	real line.	
II	Properties of Real Numbers	18
	The completeness property of R-Applications of supremum	
	property –Intervals.	
III	Sequences	18
	Sequence and their limits - Limit theorems - Monotone	
	sequences -Sub sequences - Bolzano Weierstrass theorem -	
	Cauchy criterion – Properly divergent sequences.	
IV	Infinite Series	18
	Infinite series – Geometric series – Cauchy criterion for series –	
	Harmonic series – Alternating harmonic – Comparison test –	
	Limit comparison test – Cauchy condensation test and Robust	
	test(statement only). Absolute convergence - Conditional	
	convergence – Alternating series – Leibnitz's theorem(statement	
	only).	
V	Limits	18
	Limit of function – limit theorems – extension of limit concepts.	
Reference	Text Books:	

	Robert G. Bartle, Donald R. Sherbert, Introduction to Real Analysis, 3 rd Edition,			
	Wiley Student Edition, 2007.			
	Unit I : Ch 1 (1.1-1.3),Ch 2 (2.1,2.2)			
	Unit II : Ch 2(2.3-2.5)			
	Unit III :Ch 3(3.1-3.6)			
	Unit IV :Ch 3(3.7)			
	Unit V : Ch 4(4.1- 4.3)			
	Reference Books:			
	1. Kenneth A.Ross, Elementary analysis the theory of calculus, Springer international edition, 2007.			
	2. M.K.Singal, Asha Rani Singal, A first course in real analysis, S. Chand & Co., 2003.			
	3. Tom. M. Apostal, Mathematical Analysis, 2 nd edition, arosa publishing house, 1974.			
	4. Walter Rudin, Principles of Mathematical Analysis, 3 rd Edition, McGraw Hill, 1976.			
Course	On completion of the course, students should be able to			
Outcomes				
	CO 1: acquire the knowledge of basic concepts of real analysis, sets,			
	functions, mathematical induction and completeness property.			
	CO 2: understand the concept of continuity, convergent sequence, sub			
	sequence and divergent sequence.			
	CO 3: apply the limit of various function.			
	CO 4: analyze the extension of limit concepts.			

Course Code & Title	15M412AL AC VI – R Programming Lab		Percentage of Revision: 100%
II B.Sc. Mathematics	Semester : IV	Credits: 4	Hrs/ Wk : 6
Cognitive Level	K-1 - Acquire K-2 - Understanding K-3 - Apply K-4 - Evaluate K-5 - Analyze		
Course Objectives	 The Course aims to know all needed about R programming and also to meet the global requirement in software industries. 		
Employability	Global Need Experiential learning		

UNIT	Content	No. of Hours
	Theory	12
	Introduction to R – Installation of R reading and getting data into R	
	- types of Data items - The structure of Data Items - Working	
	with objects - Descriptive statistics and tabulation - data	
	distribution - Simple hypothesis testing - Graphical analysis -	
	Formula notation and Complex statistics – Regression – Writing	
	your own scripts.	- 0
	LAB Practical	78
	 Histograms and summary statistics 	
	• Scatter plots and correlations	
	• Regression	
	 Confidence intervals 	
	 Multiple regression 	
	• Group comparisons(t – tests, ANOVA, post-hoc tests)	
	• Factorial ANOVA	
	• Chi – square	
	• Non – linear regression(Binary logistic and Poisson)	
	 Estimation (parametric and Non – parametric) 	
Reference	Text Books:	
	Paul Teetor, R Cook book, O'Reilly Publication, First Edition, 2014.	
	Reference Books:	*****
	Mark Gardener, Beginning R -The Statistical Programming Languag	e, wiley
Course	Publications, 2015.	
Outcomes	On completion of the course, students should be able to	ruoturos
Outcomes	CO 1: gain knowledge about different data types and different data st in R.	i uctures
	CO 2: understand basic regular expressions in R.	
	CO 3: apply the various graphics in R for data visualization.	
	CO 4: analyze the uses of R for descriptive statistics and inferential s	tatistics.

Course Code & Title	15M513 CCVII – Modern Algebra	ı	Percentage of Revision: 10%
III B.Sc. Mathematics	Semester : V	Credits : 5	Hrs/ Wk: 5
Cognitive Level	K-1 - Acquire K-2 - Understanding K-3 - Apply K-4 - Evaluate K-5 - Analyze		
Course Objectives	 The Course aims to provide a first approach to the subject of algebra, which is one of the basic pillars of modern mathematics and an adequate foundation for further study in abstract algebra. 		
Employability	Global Need Participative Learning, Problem Solving		

UNIT	Content	No. of Hours	
I	Groups and Subgroups	15	
	Definition of a group – Some Examples of groups – Some		
	Preliminary Lemmas – Subgroups – A counting principle –		
	Normal groups and Quotient groups.		
II	Homomorphisms and Automorphisms	15	
	Homomorphisms (Except applications) – Automorphisms –		
TTT	Cayley's theorem.	1.5	
III	Permutation groups and Rings	15	
	Permutation groups – Definition and examples of Rings – Some special classes of Rings – Homomorphisms.		
IV	Ideals and Vector Spaces	15	
1,	Ideal and Quotient Rings – More Ideals and Quotient Rings –	15	
	Basics of Vector spaces – Linear Independence and Bases – Dual		
	spaces.		
V	Inner product spaces and Linear Transformation	15	
	Inner product spaces – The Algebra of Linear transformations –		
	Characteristic Roots.		
Reference	Text Books:		
	I.N. Herstein, Topics in Algebra, Wiley Student Edition, Second Ed	lition, 2011.	
	UnitI: Ch 2(2.1-2.6)		
	Unit II: Ch 2 (2.7-2.9)		
	Unit III: Ch 2(2.10), Ch 3 (3.1-3.3)		
	Unit IV: Ch 3(3.4,3.5), Ch 4 (4.1-4.3)		
	Unit V: Ch 4 (4.4), Ch 6(6.1,6.2)		
	Reference Books:		
	1. S. Kumaresan, Linear Algebra, a Geometric Approach, PH1 Lean	rning Pvt. Ltd.,	

	 2010. 2. John. B. Fraleigh, A first course in Abstract Algebra, 7th Edition, 2002.
Course	On completion of the course, students should be able to
Outcomes	 CO 1: gain the knowledge about concepts of sets, mapping, relations and use some basic definition of groups & subgroups. CO 2: understand the importance of algebraic properties with regard to working within various number systems. CO 3: apply the results from group theory to study the properties of rings and fields and to possess the ability to work within their algebraic structure. CO 4: analyze the concepts of homomorphism and isomorphism for groups, rings and field.

Course Code & Title	15M514 CCVIII – Real Analysis I	I	Percentage of Revision : 100%
III B.Sc. Mathematics	Semester : V	Credits: 5	Hrs/ Wk: 5
Cognitive Level	K-1 - Acquire K-2 - Understanding K-3 - Apply K-4 - Evaluate K-5 - Analyze		
Course	The Course aims to		
Objectives	 introduceadvancedconceptsin real analysis. 		
Employability	Global Need	Participative solving	Learning, Problem

UNIT	Content	No. of Hours
I	Continuous functions – Combination of continuous functions – Continuous functions on intervals – Uniform continuity.	15
II	Lipschitz functions – Monotone and inverse functions – Differentiation: The derivative – chain rule.	15
III	Inverse functions – The mean value theorem – Intermediate value theorem – Properties of derivatives – Darboux's theorem – Taylor's theorem – Application of Taylor's theorem – Relative Extrema – Convex functions.	15
IV	The Riemann Integral – Riemann integrable functions – The fundamental theorem.	15
V	Problems on sequence & series, Limits, continuity, differentiability and integrability.	15
Reference	 Text Books: Robert, G. Bartle, Donald R. Sherbert, Introduction to Real Analyse. Unit I: Ch 5 (5.1 – 5.4.3) Unit II: Ch 5(5.4.4-5.4.6,5.6.1-5.6.5), Ch 6(6.1.1-6.1.7) Unit III: Ch 6(6.1.8-6.2.12,6.4.1-6.4.6) Unit IV: Ch 7(7.1-7.2) Unit V: Bank of Problems given separately Reference Books: 1. Kenneth A Ross, Elementary Analysis and the theory of calculus International Edition, 2007. 2. M.K. Singal, Asha Rani Singal, A first course in Real Analysis, 2003. 3. Tom. M. Apostal, Mathematical Analysis, Second Edition, Narohouse, 1974. 4. Shanthi Narayan, Elements of Real Analysis, S. Chand and compared to the control of the course in th	ns, Springer, S. Chand & Co., osa Publishing

	(unit4)5. Walter Rudin, Principles of Mathematical Analysis, Third Edition, MC. Graw Hill, 1976.
Course	On completion of the course, students should be able to
Outcomes	
	CO 1: gain knowledge about the basic properties of Riemann integral.
	CO 2: understand the differentiability of real functions and its related theorems.
	CO 3: apply chain rule and inverse function.
	CO 4: evaluate the properties of derivatives.
	CO 5: analyze the methods in real analysis can be applied in important practical
	problems.

Course Code & Title	15M515 CC IX – Graph Theory		Percentage of Revision: 20%
III B.Sc. Mathematics	Semester : V	Credits: 4	Hrs/ Wk : 6
Cognitive Level	K-1 - Acquire K-2 - Understanding K-3 - Apply K-4 - Evaluate K-5 - Analyze		
Course Objectives	 The Course aims to introduce the basic concept of Graph Theory and enable the students to learn about the essentials of Graph Theory. 		
Employability	Global Need	Participative Solving	Learning, Problem

UNIT	Content	No. of Hours
I	Introduction Definition of Graph – Edge Sequences, Walks, Paths and Circuits – Digraphs – Subgraphs and Operations on Graphs – Isomorphism of Graphs – Connected graphs – Euler graphs –	18
II	Hamiltonian Circuits and paths – Planar graph – Petersen graph. Trees Properties © Special Classes © Special Trees © Minimal	18
	Properties – Special Classes – Spanning Trees – Minimal Spanning Trees – Travelling Salesman problem.	10
III	Cut – Set Theory and Matrix Representation Cut sets – Properties – Fundamental circuits and cut set – Incidence Matrix – Sub Matrix – Sub Matrices – Circuit Matrix – Fundamental Circuit Matrix – Cut –set Matrix – Path Matrix.	18
IV	Colouring, Covering and Partitioning Chromatic Number – Chromatic Partitioning – Chromatic Polynomial – Matching – covering – The Four color problem.	18
V	Applications Graphs as Models – Applications of Coloring – Shortest path problem – Transport Networks – Topological Sorting – De Brujin sequence and De Brujin Digraphs.	18
Reference	Text Books: 1. N. Chandrasekaran, M. Umaparvathi, Discrete Mathematic Pvt.Ltd., New Delhi, 2010. Unit I: Ch 1(1.11) Ch 10(10.1-10.6) Unit II: Ch 11(11.1-11.5) Unit V: Ch 10(10.9.1-10.9.6) 2. NarasinghDeo, Graph Theory with Applications to Computer Science, PHI of India, New Delhi, 2005. Unit III: Ch 4(4.1-4.4) Ch 7(7.1-7.4,7.6,7.8) Unit IV: Ch 8 Reference Books: 1.K.R.Parthasarathy, Basic Graph Theory, Tata Mc. Graw- Hill Pulling New Delhi, 1994.	Engineering and (8.1-8.6)

	2. Douglas B. West, Introduction to Graph Theory, PHI Pvt., Ltd., New Delhi, II Edition, 2006.
Course Outcomes	On completion of the course, students should be able to CO 1: acquire the knowledge of the fundamental concepts in graph theory. CO 2: understand the concept of cut points, bridges and blocks. CO 3: apply the concept of Eulerian graph and Hamiltonian graph. CO 4: evaluate the problems involving vertex connectivity and edge connectivity.

Course Code & Title	15M516 CC X – Discrete Mathematics		Percentage of Revision : NIL	
III B.Sc. Mathematics	Semester : V	Credits: 4	Hrs/ Wk: 5	
Cognitive Level	K-1 - Acquire K-2 - Understanding K-3 - Apply K-4 - Evaluate K-5 - Analyze			
	The Course aims to			
Course	• direct the students to get clear	thinking, sound	reasoning and a proper	
Objectives	attitude towards the applications of mathematics in computer science and other related fields.			
Employability	Global Need	Participative	Learning, Problem	
and Skill		solving		
Development				

UNIT	Content	No. of Hours
I	Propositional Calculus	15
_	Statement and Notation – connectives and Truth tables – Normal	
	forms – theory of Inference for statement – Calculus.	
II	Predicate Calculus	15
	Introduction Inference – Theory of Predicate Calculus – Nested	
	Quantifiers – Proof Techniques.	
III	Lattices	15
	Definition and examples - Properties of Lattices - Lattices as	
	Algebraic Systems – Sublattices and Lattice – Isomorphism –	
	Special classes of Lattices – Distributive Lattices.	
IV	Boolean Algebra	15
	Definitions – Boolean Algebra as Lattice and Algebraic System –	
	Properties - Subalgebra and Homomorphisms of Boolean	
	Algebras – Boolean Functions.	
V	Combinatorics	15
	Permutations – Combinations – Permutations with Repetitions –	
	Combinations with repetition – Permutations of sets with	
	Indistinguishable Objects – Miscellaneous Problems on	
	Permutations and Combinations – Binomial Identities and	
	Binomial Theorem.	
Reference	Text Books:	
	1. S. Santha, Discrete Mathematics, Cengage Learning, India	Pvt. Ltd., 2011.
	Unit I: Ch 1(1.1 - 1.5) Unit II: Ch 2(2.1 – 2.4)	
	2. N. Chandrasekaran, M. Umaparvathi, Discrete Mathemati	cs, PHI Learning

	Pvt. Ltd., New Delhi, 2010.		
	Unit III: Ch 8(8.1 – 8.6) Unit IV: Ch 9(9.1 – 9.5)		
	Unit V: Ch 3(3.1-3.7)		
	Reference Books:		
	1. J. P. Trembley, R. Manohar, Discrete Mathematical Structures with		
	Applications to Computer Science, Tata McGraw – Hill Publishing Co.Ltd.,		
	New Delhi, 2007.		
	2. Ralph P. Grimaldi, B. V. Ramana, Discrete and Combinatorial Mathematics		
	(An Applied Introduction), Pearson, 5 th edition, 2007.		
Course	On completion of the course, students should be able to		
Outcomes			
	CO 1: acquire knowledge to write an argument using logical notation.		
	CO 2: understand the basic principles of sets and operations in sets.		
	CO 3: apply the rules of inference and methods of proof including direct and		
	indirect proof form, proof by contradiction and mathematical induction.		
	CO 4: evaluate Boolean functions and simplify expression using the properties of		
	Boolean Algebra.		
	200144111940141		
1			

Course Code & Title	15M517b EC I – Fuzzy Theory	Percentage of Revision : NIL	
III B.Sc. Mathematics	Semester : V	Credits: 5	Hrs/ Wk: 5
Cognitive Level	K-1 - Acquire K-2 - Understanding K-3 - Apply K-4 - Evaluate K-5 - Analyze		
Course Objectives	The Course aims to	differentiation,	Vector integration,
Employability	National Need	Participative I solving	Learning, Problem

UNIT	Content	No. of Hours	
I	Definitions-Different types of fuzzy sets- Properties of fuzzy	15	
	sets-Operations in fuzzy sets -General properties of fuzzy Vs		
	crisp.		
II	Introduction - Important theorems- Extension principle for fuzzy	15	
	sets-Fuzzy compliments-Further operations on Fuzzy sets.		
III	Introduction-Projection and cylindrical fuzzy relations-	15	
	Composition-Properties of Min-Max compositions-Binary		
	relations on a single set.	1.5	
IV	Introduction-Fuzzy measures-Evidence theory probability	15	
	measure-possibility and necessity measures.	1.5	
V	Introduction-individual decision making-multiperson decision	15	
D. C	making-multi-criteria decision making-Fuzzy ranking method.		
Reference	Text Books:	· 200 <i>c</i>	
	Pundir and Pundir, Fuzzy sets and their applications, A Pragati Edition, 2006. Unit I: Ch 1 (1.16-1.19)		
	Unit II : Ch 2 (2.1-2.5)		
	Unit III : Ch4 (4.1-4.5)		
	Unit IV : Ch 5 (5.1-5.5)		
	Unit V : Ch9(9.1-9.5)		
	Reference Books:		
	George J. Klir and Bo Yuan, Fuzzy Sets and Fuzzy Logic Theor	y and Applications,	
	PHI, New Delhi, 2002.	J 11 /	
Course	On completion of the course, students should be able to		
Outcomes			
	CO 1: gain the methods of fuzzy logic (or) recognize fuzzy logic me	embership	
	function acquires knowledge of important pats of fuzzy set theory.		
	CO 2: understand the basic mathematical elements of the theory of fuzzy sets		
	CO 3: apply the rules of fuzzy logic for fuzzy control.		
	CO 4: evaluate fuzzy statistics applications.		

Course Code & Title	15M517a EC I – Numerical Methods	Percentage of Revision : 5%	
III B.Sc. Mathematics	Semester : V	Credits: 5	Hrs/ Wk: 5
Cognitive Level	K-1 – Acquire K-2 – Understanding K-3 – Apply K-4 – Evaluate K-5 – Analyze		
Course Objectives	 The Course aims to provide the knowledge with Numerical Methods of solving the non-linear equations, Interpolation, Differentiation and Integration. 		
Employability and Skill Development	Global Need	Participative Problem Solvi	Learning, ng

UNIT	Content	No. of Hours
I	Iterative methods: Bisection method – False position method – Newton Raphson method – Solution of simultaneous Linear Algebraic equations – Gauss Elimination, Gauss-Jordan, Gauss-Jacobi & Gauss-Seidel iterative methods.	15
П	Definition: Forward and Backward differences – Newton's formula for interpolation Operators – Properties and relationship among them – Missing terms & summation of series – Montmort's theorem.	15
III	Divided differences – Newton's interpolation formula for unequal intervals – Lagranges' interpolation formula – Inverse interpolation.	15
IV	Numerical Differentiation and Integration – Trapezoidal rule – Simpson's one-third rule – Simpson's three-eight rule – Difference Equations and Method of Solving – The Cubic Spline method.(Problems only)	15
V	Taylor's series – Picard's method of successive approximation – Euler's method – Modified Euler Method – Runge-Kutta method – Predictor-Corrector methods – Milne's and Adam's Bashforth methods. (Problems only)	15
Reference	Text Books: P.Kandasamy, K.Thilagavathy, K.Gunavathi, Numerical Methods, S.Chand Company Ltd, 2005. Unit I :Ch 3(3.1 – 3.4) , Ch 4(4.1,4.2,4.7-4.9) Unit II :Ch 5(5.1 – 5.4) Unit III :Ch 8(8.1 – 8.5,8.7) Unit IV :Ch 9(9.1 – 9.3,9.7-9.9,9.13-9.14), Ch 10 Unit V: Ch 11(11.5,11.8,11.9,11.11 – 11.13,11.16-11.18)	

	Reference Books: 1.S.Narayanan, S.Viswanathan, Numerical Analysis, 1994. 2. M.K.Jain, S.R.K.Iyengar, R.K.Jain, Numerical Methods for Scientific and Engineering Computation, Wiley Eastern Limited, New Delhi, 1985.	
Course	On completion of the course, students should be able to	
Outcomes		
	CO 1: gain the knowledge of solving an algebraic or transcendental equation	
	using an appropriate Numerical Methods.	
	CO 2: understand the mathematics concepts underlying the Numerical Methods.	
	CO 3: apply Numerical Methods to obtain approximate solutions to mathematical	
	problems.	
	CO 4: evaluate a derivative at a value using an appropriate Numerical Method	

Course Code & Title	15M5N NMEC – Quantitative Aptitude	Percentage o	f Revision : NIL
III Year (Except B.Sc Maths)	Semester : V	Credits: 4	Hrs/ Wk: 4
Cognitive Level	K-1 – Acquire K-2 – Understanding K-3 – Apply K-4 – Evaluate K-5 – Analyze		
Course Objectives	The Course aims to • learn basic Mathematical skills for examinations.	solving problem	ns in competitive
Employability and Skill Development	Regional Need	Problem solvin	ng

UNIT	Content	No. of Hours
I	Arithmetic Progression – Geometric Progression – Simple interest – Types of annuities – Present value and amount of annuity.	12
II	Ratio – Proportion – Partnership	12
III	Percentage – Mixture – Profit and Loss	12
IV	Time and Work, Time and Distance, Work and Wage	12
V	Pipes and Cisterns – Permutations and Combinations.	12
Reference	Text Books: 1. P. Navaneethan, Business Mathematics, Jai Publishers, Trichy, 2012.	
Outcomes	CO 1: acquire the knowledge in Arithmetic and Geometric progressic CO 2: understand the ratio, proportion and partnership. CO 3: evaluate permutation and combination. CO 4: apply the concepts of profit & loss in real life problems.	ion .

Course Code & Title	15M618 CCXI – Complex Analysis		Percentage of Revision: NIL
III B.Sc. Mathematics	Semester : V	Credits: 5	Hrs/ Wk : 6
Cognitive Level	K-1 – Acquire K-2 – Understanding K-3 – Apply K-4 – Evaluate K-5 – Analyze		
Course Objectives	 The Course aims to provide an introduction to the theories for functions of a complex variable. help the students to have an in depth knowledge of limits and continuity, differentiability, analytic functions, conformal mapping, complex integration and residues. 		
Employability	Global Need Participative Learning, Problem solving		

UNIT	Content	No. of Hours
I	Analytic Functions	18
	Limit-Continuity and Uniform Continuity- Differentiability and	
	Analyticity – Necessary & sufficient conditions for	
	differentiability – C-R equations in polar coordinates – Complex	
	functions as a function of z.	
II	Elementary and Conformal Mappings	18
	Bilinear Transformation – Circles and Inverse points –	
	Transformation for z^2 , $z^{1/2}$, $z + \frac{1}{z}$, e^z , $\log z$, $\sin z$, $\cos z -$	
	Conformal mapping – Examples.	
III	Complex Integration	18
	Simple rectifiable oriented curves – Integration of complex	
	functions - Simple integrals - Definite integrals - Interior and	
	exterior of a closed curve – Simply connected region – Cauchy's	
	integral formula and formulas for derivatives – Zeroes of a	
	function.	
IV	Taylors and Laurent's series	18
	Taylor's series – Zeroes of analytic function – Laurent's series –	
	Cauchy product and division – Singular point – Isolated	
	singularities – Removable singularity – Pole – Essential	
	singularity – Examples.	
V	Residues	18
	Definitions – Calculation of Residues – Real definite integrals –	
	Examples.	
Reference	Text Books: P. Duraipandian, Complex Analysis, S. Chand& Company Pvt. 2014.	Ltd, New Delhi,

	Unit I : Ch4 (4.1-4.10)
	Unit II :Ch7 (7.1-7.10)
	Unit III : Ch8 (8.1-8.10)
	Unit IV: Ch9 (9.1-9.9,9.13)
	Unit V: Ch10 (10.1-10.4)
	Reference Books:
	1. S. Arumugam, A. Tangapandi ISAAC, A. Somasundaram, Complex Analysis,
	Scitech Publications (India) Pvt.Ltd., Chennai,2012.
	2. S. Ponnusamy, Foundations of Complex Analysis, Narosa publishing House,
	New Delhi,2014.
Course	On completion of the course, students should be able to
Outcomes	
	CO 1: acquire knowledge about continuity and differentiability for complex
	functions.
	CO 2: understand Taylor's and Laurent's expansion of simple function.
	CO 3: apply the methods of complex analysis to evaluate definite integrals and
	infinite series.
	CO 4: evaluate the nature of singularities and calculating residues.

Course Code & Title	15M619 CCXII – Mechanics	Percentage of Revision : NIL	
III B.Sc. Mathematics	Semester : V	Credits: 4	Hrs/ Wk : 6
Cognitive Level	K-1 - Acquire K-2 - Understanding K-3 - Apply K-4 - Evaluate K-5 - Analyze		
Course Objectives	 The Course aims to enable the students to acquire a deep knowledge about the concept of Forces, Moments Friction and resultant of more than one force action on a surface Projectiles, Collision of Elastic Bodies and Motion under a central forces. 		
Employability and Skill Development	Global Need	Participative solving	Learning, Problem

UNIT	Content	No. of Hours
I	Forces acting at a points, parallel forces moments	18
	Forces acting at a point parallelogram of forces - Triangle of	
	forces - Lami's theorem - Polygon of forces - Resolution of a	
	force - Theorem on Resolved parts. Parallel Forces and	
	Moments: Resultant of two unlike and unequal parallel forces	
	acting on a rigid body - Conditions of equilibrium of three	
	coplanar parallel forces Moments of a force – Verizon's theorem	
	on moments Generalized Theorem of moments.	
II	Equilibrium of three forces Acting on a Rigid Body and	18
	Friction	
	Equilibrium of three force's acting on A Rigid body: Three	
	coplanar forces – Two trigonometric theorems Friction: Types of	
	Friction, Laws of friction, Equilibrium of a body on a rough	
	inclined plane, Equilibrium of a body on a rough inclined plane	
	under a force parallel to the plane Equilibrium of a body on a	
	rough inclined plane under any force.	
III	Projectiles	18
	Projectiles – Path of a projectile - Characteristics of the motion of	
	a projectile -Velocity of the projectile - Range of an inclined	
	plane.	
IV	Collision of Elastic Bodies	18
	Definitions of Impulsive force and Impulse Collision of Elastic	
	Bodies: Basic definitions fundamental laws of Impact, Impact of	
	a smooth sphere on a fixed smooth plane - Direct and oblique	

	impact of two smooth spheres – Loss of kinetic energy due to		
	direct and oblique impact of two smooth spheres.		
V	Motion under a central force	18	
	Velocity and acceleration in polar coordinates(no derivation) –		
	Equations of Motion in polar coordinates Motion under a central		
	force Basic Definitions – Differential Equation of central orbit		
	pedal equation of the central orbit – Velocities in a central orbit –		
	Given the orbit to find the law of force to the pole.		
Reference	Text Books:		
	1. M.K. Venkataraman, Statics, Agasthiar Publications, 2012.		
	Unit I :Ch 2, Ch3		
	Unit II: Ch 5, Ch7		
	2. M.K. Venkataraman, Dynamics, Agasthiar Publications, 2012.		
	Unit III :Ch 6(6.1-6.15)		
	Unit IV :Ch 8(8.1-8.8)		
	Unit V: Ch 11(11.5-11.11)		
	Reference Books:		
	1. S.L. Loney, Elements of Statics & Dynamics, A.I.T.B.S. Publications, 1997.		
	2. P. Duraipadian, Laxmi Duraipandian, Muthamizh Jayapragasam, Mechanics, S.		
	Chand & Company Ltd 2006.		
Course	On completion of the course, students should be able to		
Outcomes			
	CO 1: acquire the knowledge of forces acting at point and equilibrium of		
	three forces acting on a rigid body.		
	CO 2: understand types of forces, moments and frictions.		
	CO 3: apply the laws of impact to steady collision of bodies		
	CO 4: evaluate the differential equation of central orbit, and pedal -	_	
	equations.		

Course Code & Title	15M620 CCXIII – Number theory	Ÿ	Percentage of Revision: 40%
III B.Sc. Mathematics	Semester : V	Credits: 5	Hrs/ Wk : 6
Cognitive Level	K-1 - Acquire K-2 - Understanding K-3 - Apply K-4 - Evaluate K-5 - Analyze		
Course	The Course aims to		
Objectives	 introduce some basic ideas of Nu 	mber Theory.	
Employability	Global Need Participative		learning, Problem
and Skill		solving	
Development			

UNIT	Content	No. of Hours
I	The Division algorithm -The Greatest Common Divisor-	18
1	The Euclidean algorithm – The Diophatine equation $ax + by$	10
	=c -Primes and their distributions: The funtamental	
	theorem of Arithmetic -The sieve of Eratosthenes.	
II	The Goldbach Conjecture -Carl Friedrich Gauss-Basic	18
	properties of congruence- Binary and Decimal	
	Rpresentation of integes - Linear congruences and the	
	Chinese Remainder Theorem.	
III	Fermat'stheorem-Fermat's Little theorem and	18
	Pseudoprimes-Wilson's theorem-The Fermat Kraitchik	
	Factorization method.	
IV	Number Theoretic functions: The sum and Number of	18
	Divisors - The Mobius inversion formula - The greatest	
	integer function - An application to the Calendar: Euler's	
	Generalization of Fermat's theorem: Leonhard Euler-	
	Euler's Phi-function - Euler's theorem - some properties of the Phi –function	
V		10
V	Continued Fractions: Finite continued Fractions-Infinite	18
	continued Fractions.	
Reference	Text Books:	
Trefer effec	David M.Burton, Elementary Number Theory, Sixth	Edition, TATA
	McGraw -Hill Publishing Company Limited, New Delhi.	
	Unit I : Ch 2 (2.2 - 2.5), Ch 3 (3.1, 3.2)	
	Unit II: Ch 3(3.3), Ch 4 (4.1-4.4)	
	Unit III :Ch 5(5.1-5.4)	
	Unit IV :Ch 6 (6.1-6.4), Ch 7 (7.1-7.4)	
	Unit V : Ch 15(15.1-15.3)	

	Reference Books:		
	1. Ivan Niven, Herbert S. Zuckerman, Hugh L. Montgamery, An		
	Introduction to Theory of Numbers, Fifth Edition Wiley student Edition, 2006.		
	2. M. Apostol, Introduction to Analytic Eighth Edition, Springer		
	International Student Edition, 1998.		
	3. Bruce C. Berndt Number Theory in the spirit of Ramanujan, Published by		
	American Mathematical Society (Indian Edition), 2000.		
	4. George E. Andrews, Number Theory, Hindustan Publishing Corporation,		
	1984.		
Course	On completion of the course, students should be able to		
Outcomes			
	CO 1: gain the knowledge to find quotients and remainders from integer		
	division.		
	CO 2: understand the definitions of congruence, residue classes and least		
	residues.		
	CO 3: apply Euclid's algorithm and backwards substitution.		
	CO 4: analyze hypothesis and conclusions of mathematical statements (or)		
	analyze learning methods and techniques used in number theory.		
	CO 5: evaluate multiplicative inverse, modulo n and use to solve linear		
	congruence.		

Course Code & Title	15M621T/L CCIX(T/L) – Programming in JAVA with Lab		Percentage of Revision: 100%
III B.Sc. Mathematics	Semester : VI Credits : 4 Hrs/ WI		
Cognitive Level	K-1 – Acquire K-2 – Understanding K-3 – Apply K-4 – Evaluate K-5 – Analyze		
Course Objectives	 The Course aims to provide an introduction to object oriented programming using the JAVA programming language. Its main objective is to teach the basic concepts and techniques which form the object oriented programming paradigm. help the students to develop their programming skills and to build programs in mathematical problems. 		
Employability, Entrepreneurship and Skill Development	Global Need	Experiential Learning, Participative Learning	

UNIT	Content	No. of Hours
I	An overview of JAVA	18
	JAVA language – Fundamentals classes and objects – Constructors-	
	Garbage Collections- Finalize method - Overloading - Recursion	
	data types- Variables and Arrays.	
II	Operators and Classes	18
	Arithmetic Operators- Bitwise Operators- Relational Operators-	
	Boolean Logical Operators - Assignment Operators - Control	
	statements - Classes.	
III	Inheritance, Packages and Interfaces	18
	Inheritance basics- Method overriding-Abstract classes and object	
	class – Packages- Importing packages- Interfaces.	
IV	Exception Handling and Multithreading	18
	Exception handling fundamentals – Java's built in exceptions –	
	Using exceptions the Java thread models – Multithreading –	
V	Threading priorities – Inter thread communication.	10
v	I/O, Applets, AWT	18
	I/O basics – Reading console input – Writing console output –	
	Applet fundamentals – Native methods – AWT classes – Windows	
D. C	fundamentals – Consoles.	
Reference	Text Books: PatrikNaughton& Herbert Shidlt, Java 2: The Complete Reference,	TATA McGraw
	Hill, 7 th Edition, 2007.	TATA MICOTAW
	Unit I : Ch 2, Ch 3	
	Office 1. Cit 2, Cit 3	

	Unit II :Ch 4, Ch 5, Ch 6		
	Unit III: Ch 7, Ch 8, Ch 9		
	Unit IV : Ch 10, Ch 11		
	Unit V : Ch 12, Ch 21, Ch 22		
	Reference Books:		
	1. E. Balagurusamy, Programming with Java a Printer Fourth Edition, Tata McGraw Hill		
	Publishing Company Ltd., 2011.		
Course	On completion of the course, students should be able		
Outcomes			
	CO 1: gain knowledge about the structure and model of the Java		
	programming language.		
	CO 2: understand the uses of the JAVA programming language for various		
	programming technologies and mathematical problems.		
	CO 3: apply Java programs to solve simple problems. Develop some software		
	based on mathematics problems in the JAVA programming language.		
	CO 4: evaluate user requirements for software functionality required to		
	decide whether the JAVA programming language can meet user		
	requirements.		
	CO 5: analyze the uses of certain technologies by implementing them in the		
	JAVA programming language to solve the given problem.		

Course Code & Title	15M622b EC II – Astronomy	Percentage of Revision : NIL	
III B.Sc. Mathematics	Semester : VI	Credits: 5	Hrs/ Wk: 6
Cognitive Level	K-1 - Acquire K-2 - Understanding K-3 - Apply K-4 - Evaluate K-5 - Analyze		
Course Objectives	 The Course aims to introduce the basics of Astronomy. enable the learners to learn about the name of the product o	noon and Ellip	ises.
Employability	Global need	Experiential Learning	

UNIT	Content	No. of Hours
I	Celestial sphere and diurnal motion – Celestial co-ordinates – Siderel time.	18
II	Morning and Evening stars – Circumpolar stars – Zones of Earth – Perpetual day – Twilight.	18
III	Refraction – Laws of Refraction – Tangent formula – Horizontal Refraction – Geocentric parallax.	18
IV	Kepler's laws – Anomalies – Kepler's equations – Calender.	18
V	Moon sidereal and synodic months – Elongation – Phase of moon – Eclipses Umbra and penumbra – Lunar and solar eclipses – Maximum and Minimum number of eclipses in a year.	18
Reference	Text Books: Kumaravel.S and Susheela Kumaravel, Astronomy, S.K.V Publicat Unit I :Pg. No. (39-79) Unit II : Pg. No.(80-90, 106-116) Unit III :Pg. No.(117-144) Unit IV :Pg. No.(146-162, 173-178) Unit V :Pg. No.(229-241, 256-275) Reference Books: S. Jeffrey Wright Scott, Introduction to Astronomy, JAS Education.	
Course Outcomes	On completion of the course, students should be able to CO 1: gain the knowledge about concepts of sets, mapping, relation some basic definition of groups & subgroups. CO 2: understand the importance of algebraic properties with regard within various number systems. CO 3: apply the results from group theory to study the properties of fields and to possess the ability to work within their algebraic structure. CO 4: analyze the concepts of homomorphism and isomorphism for rings and field.	d to working Frings and C

Course Code & Title	15M622a EC II – Mathematical Modeling	Percentage of Revision : NIL		
III B.Sc. Mathematics	Semester : VI	Credits: 5	Hrs/ W	k:6
Cognitive Level	K-1-Acquire K-2-Understanding K-3-Apply K-4-Evaluate K-5-Analyze			
Course Objectives	 The Course aims to enable the students to gain knowledge in solving mathematical models Using differential equations, difference equations and graphs. 			
Skill Development	Global Need Participative Learning, Problem Solving			

UNIT	Content	No. of Hours	
I	Mathematical modeling through ordinary differential equations -	18	
	Linear growth and Decay models - Compartment models -		
	Problems in Ordinary Differential Equations of First Order		
	Geometrical Problem.		
II	Mathematical modeling in Population Dynamics - Modeling of	18	
	Epidemics – Compartment models – Modelling in Economics –		
	Models in Medicine. Arms, Race, Battles and International Trade		
III	Models in Dynamics. Mathematical Modelling in Planetary motions – Circular motion	18	
111	and motion of Satellites – Modelling through Linear	10	
	Differential equations		
IV	Some simple models on basic theory of Linear Difference	18	
1 4	equations with constant coefficients – Economics and Finance	10	
	Population, Dynamics and Genetics in Probability theory.		
V	Graph models - Models in terms of Directed graph, Signed graph	18	
•	and Weighted Digraphs.	10	
Reference	Text Books:		
Keiei eiice	J.N. Kapur, Mathematical Modeling, Now Age International Pvt Ltd., 2005.		
	Unit I :Ch 2	,	
	Unit II:Ch 3		
	Unit III :Ch 7		
	Unit IV :Ch 5		
	Unit V:Ch 7		
	Reference Books:		
	1. Pundir and Pundir, Bio Mathematics Pragati Prakashan,1st Edit	ion, 2006.	
	2. Bhupendra Singh, Bio Mathematics Krishna Prakashan Media,2	2005.	
	3. J.N. Kapoor Mathematical modeling in Biology and Medicine,	East West Press,	
	1985.		

Course	On completion of the course, students should be able to
Outcomes	
	CO 1: gain the knowledge about concepts of sets, mapping, relations and use some
	basic definition of groups & subgroups.
	CO 2: understand the importance of algebraic properties with regard to working
	within various number systems.
	CO 3: apply the results from group theory to study the properties of rings and
	fields and to possess the ability to work within their algebraic structure.
	CO 4: analyze the concepts of homomorphism and isomorphism for groups, rings
	and field.

Course Code & Title	15M622a EC II – Operations Research	Percentage of Revision : NIL	
III B.Sc. Mathematics	Semester : V	Credits:	Hrs/ Wk : 6
Cognitive Level	K-1-Acquire K-2-Understanding K-3-Apply K-4-Evaluate K-5-Analyze		
Course Objectives	The Course aims to • introduce the fundamentals of operations Research Models including linear programming and applications.		
Employability and Skill Development	Global Need	Problem S	olving

UNIT	Content	No. of Hours
I	Linear Programming Problem Introduction to General Linear Programming Problem — Mathematical Formulation — Canonical and Standard forms of L.P.P. — Introduction to Linear Programming Problem — The Computational Procedure — Two Phase Method — BIG-M — Method — Introduction to Duality in Linear Programming — General Primal — Dual Pair — Formulating a Dual Problem — Primal Dual pair in Matrix form-Duality and Simplex Method — Dual Simplex Method.	18
II	Transportation and Assignment Problem Introduction to Transportation Problem LP formulation of the Transportation Problem-Existence of solution in T.P. – The Transportation tables – Loops in Transportation table Triangular Basis in a T.P. – Solutions of a T.P. – Finding an Initial Basic Feasible solution – Test for Optimality – Degeneracy in T.P. Assignment Problem – Mathematical Formulation of the problem-Solution methods of Assignment Problem – Special cases in Assignment problems – A typical Assignment problem – The travelling salesman problem.	18
III	PERT / CPM Introduction to Network Scheduling by PERT/CPM – Network Basic components – Logical sequencing – Rules of Network construction – Concurrent activities – Critical path analysis – Probability consideration in PERT – Distribution between PERT and CPM.	18
IV	Sequencing Problem Introduction to sequencing problem — Basic terms used in sequence-Processing n jobs through two machines — Processing n jobs through k machines—	18

	Replacement of Equipment/Asset that Deteriorates Gradually –		
	Replacement of Equipment that fails suddenly.		
V	Inventory Control	18	
	Introduction to Inventory control – Types of Inventories – Costs		
	associated with Inventories Factor affecting Inventory control -		
	The concept of EOQ – Deterministic Inventory problems with no		
	shortages - Deterministic Inventory problem with shortage -		
	Inventory problems with uncertain demand.		
Reference	Text Books:		
	Kantiswarup, P.K. Gupta & Manmohan, Operation Research, Sultan	n Chand and Sons,	
	16 th Edition, 2012.		
	Unit I : Ch 3(3.4, 3.5), Ch 4(4.1, 4.3, 4.4), Ch 5(5.1-5.4, 5.7, 5.9)		
	Unit II: Ch 10(10.1-10.3, 10.5-10.10), Ch 11(11.1-11.5, 11.7)		
	Unit III :Ch 25(25.1-25.8)		
	Unit IV :Ch12(12.2-12.6), Ch 18(18.2, 18.3)		
	Unit V: Ch 19 (19.1, 19.2, 19.6, 19.7, 19.9-19.11), Ch 20(20.2)		
	Reference Books:		
	1. R. PanneerSelvam, Operations Research, PHI, 2003.		
	2. H.A. Taha, Operations Research, PHI, 2004.		
	3. J.K. Sharma, Operations Research for Management, NPH, 1992	2.	
Course	On completion of the course, students should be able to		
Outcomes			
	CO 1: gain the knowledge of scientific approaches to decision – ma	ıking.	
	CO 2: understand the mathematical tools that are needed to solve		
	optimization problems.		
	CO 3: apply the concepts of simplex method and its extensions to d	ual	
	simplex algorithm.		
	CO 4: analyze the general non linear programming problems.		
	CO 5: evaluate the use of CPM and PERT to plan schedule and con	trol	
	project activities.		

Course Code & Title	15P103A/15Y103A AC I – Allied Mathematics I		Percentage of Revision : NIL
I B.Sc. Physics/Chemistry	Semester : I	Credits: 4	Hrs/ Wk : 5
Cognitive Level	 K - 1 - Acquire K - 2 - Understanding K - 3 - Apply K - 4 - Evaluate K - 5 - Analyze 		
Course Objectives	The Course aims to • gain the knowledge about Logarithmic Series, Matrice	*	inomial, Exponential,
Employability and Skill Development Global Need		Participative Learni	ng, Problem solving

UNIT	Content	No. of Hours
I	Summation of Series	15
	Binomial, Exponential, Logarithmic Series – Summation of	10
	Series – Approximations in Binomial Series(problems only)	
II	Matrices	15
	Types of Matrices – Characteristic equation – Eigen Value –	
	Eigen Vector - Cayley Hamilton's theorem (without proof) -	
	Problems.	
III	Trigonometry	15
	Expansions for $\cos n \theta$ and $\sin n\theta$ - Expansion of	
	$\cos n \theta$ and $\sin n\theta$ in ascending power of θ - Expansion of	
	$tan\theta$ - Expansion of $sin^n\theta$, $cos^n\theta$	
IV	Curvature and Radius of Curvature	15
	Curvature and radius of curvature – Cartesian formula for radius	
	of curvature – Radius of curvature in polor co-ordinates.	
V	Successive Differentiation and Partial Differentiation	15
	Successive differentiation – Standard form of nth derivatives –	
	Leibnitz theorem with their Applications. Partial Differentiation:	
	Maxima and Minima of functions of several variables.	
Reference	Text Books:	D I . 1 . 2006
	1. A. Abdul Rasheed, Allied Mathematics, MC.Graw Hill education	on Pvi. Lia, 2006.
	Unit I : Ch 1(1.2.1-1.4.1)	
	Unit II : Ch 3(3.1,3.3,3.4)	
	Unit III : Ch 5(5.1-5.3). Unit IV : Ch 6(6.1-6.3)	
	Unit V : Ch 6(6.4,6.5.1,6.5.2).	
	Ont v . On 0(0.4,0.3.1,0.3.2).	
L		

	Reference Books:			
	1. T.K.ManicavachagamPillay, T.Natarajan, S.Ganapathy, Algebra,			
	S.V.Publication, 1999.			
	2. T. K. ManicavachagomPillay, Trigonometry, S.V. Publication, 1999.			
	3. P.R. Vittal, Allied mathematics, Margham publishers, 3 rd edition 2002.			
Course	On completion of the course, students should be able to			
Outcomes				
	CO 1: recollect basic concepts of Binomial, Exponential series, matrices.			
	CO 2: understanding the concepts of the characteristic equation and its			
	applications in matrices.			
	CO 3: apply the integral concepts to extend the study of multiple integrals.			
	CO 4: express the given series in Fourier form			

Course Code & Title	15P104A/15Y104A AC II – Allied Mathematics II		Percentage of Revision : 40%
I B.Sc. Physics/Chemistry	Semester : I	Credits: 4	Hrs/ Wk : 4
Cognitive Level	K-1 - Acquire K-2 - Understanding K-3 - Apply K-4 - Evaluate K-5 - Analyze		
Course Objectives	The Course aims to gain knowledge about the c	oncepts of Differen	ntiation, Integration
Employability and Global Need Participative I Skill Development		Participative Lear	rning, Problem solving

UNIT	Content	No. of Hours
I	Finite Differences	12
	Finite differences – Newton's forward & Backward difference	
	formula for Interpolation and Lagrange's interpolation.(Problem	
	only)	
II	Reduction Formula	12
	Reduction Formula for $\sin^n x$, $\cos^n x$ and $\sin^m x \cos^m x$ - Properties	
	of definite integrals.	
III	Multiple Integrals	12
	Double Integrals - Triple Integrals - Change of Order of	
	Integration – Simple Problems only.	
IV	Fourier Series	12
	Definition of Fourier series – Fourier coefficients – Odd and	
	Even functions in evaluating Fourier coefficients – Half range	
	Fourier Sine and Cosine series – Simple problem only.	
V	Statistical Distribution	12
	Discrete & Continuous distribution: Binomial, Poisson & Normal	
	distributions, Mean, Variance, Recurrence Relation, Additive	
	Property, Moment Generating function of these distributions,	
	Properties of Normal distribution.	

Reference	Text Books:
	1. A. Abdul Rasheed, Allied Mathematics, MC.Graw Hill education Pvt. Ltd,
	2006.
	Unit I : Ch 4
	Unit II : Ch 7(7.5-7.6)
	Unit III : Ch 8(8.1-8.3)
	Unit IV : Ch 9
	2. S. C. Gupta, Fundamental of Statistics, Himalaya Publishing House, 6 th edition,
	2004.
	Unit V : Ch 14
	Reference Books:
	1. P. R. Vittal, Allied Mathematics, Margham Publications, 3 rd edition.
	2. B. S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 36 th edition,
	2002.
	3. S. S. Sastry, Introductory of Numerical Analysis, PHI, 1995.
	On completion of the course, students should be able to
	CO 1: recollect basic concepts of Fourier series.
	CO 2: understanding about the concept of multiple integrals and statistical methods.
	CO 3: get an idea about trigonometric functions $\sin^n x$, $\cos^n x$, expansion of $\sin nx$,
Course	cosnx in powers of $sinx$ and $cosx$, Hyperbolic functions and Inverse Hyperbolic
Outcomes	functions.
	CO 4: solving the polynomial equations using interpolating methods: Newton's forward,
	backward and Lagrange's methods.

Course Code & Title	15P206A/15Y206A AC III – Allied Mathematics III		Percentage of Revision : NIL
I B.Sc. Physics/Chemistry	Semester : II	Credits: 4	Hrs/ Wk: 5
Cognitive Level	K-1 – Acquire K-2 – Understanding K-3 – Apply K-4 – Evaluate K-5 – Analyze		
Course Objectives	 The Course aims to gain the knowledge about the concepts of ordinary differential equations, partial differential equations, Laplace transforms, Vector differentiation and Vector Integration. 		
Employability and Skill Development	Global Need	Participative Lea	rning, Problem solving

UNIT	Content	No. of Hours
I	Ordinary Differential Equations	15
_	Ordinary Differential Equations of first order but of higher degree	13
	 Equations solvable for x,y,p - Clairaut's Equations - Second 	
	order differential equations with constant coefficients – Finding	
	Particular integrals when the RHS is of the type of e ^{kx} , sinkx,	
	$coskx$, X^k , $e^{kx}f(x)$.	
II	Partial Differential Equations	15
	Formation of Partial Differential Equations of first order by	
	eliminating arbitrary constants & arbitrary functions – Definition	
	of kinds of solutions - Four standard forms and Lagrange's	
	methods – PDE reducible to standard forms.	
III	Laplace Transforms	15
	Definition of Laplace Transform – Standard functions of Laplace	
	Transform – First Shifting theorem – Inverse transforms relating	
	to the above standard forms – Solving differential equation using	
	Laplace Transforms.	
IV	Vector Differentiation	15
	Vector and scalar fields – Gradient, Divergence, Curl of vector –	
	Laplacian Operator – Vector Identities – Directional derivative.	
V	Vector Integration	15
	Line integrals – Surface integrals – Volume integrals – Gauss	
	divergence - Stoke's theorem and Green's theorem and their	
	applications.	

Reference	Text Books:			
	1. A. Abdul Rasheed, Allied Mathematics, MC.Graw Hill education Pvt. Ltd, 2006.			
	Unit I : Ch 10(10.1 - 10.4)			
	Unit II : Ch 11			
	Unit III : Ch 12			
	Unit IV : Ch 13			
	Unit V : Ch 14			
	Reference Books:			
	1. P. R. Vittal, Allied Mathematics, Margham Publications, 3 rd edition.			
	2. M. K. Venkatraman, Engineering Mathematics, NPC, 1998.			
	3. P. Kandasamy, K. Thilagavathy, K. Gunavathy, Engineering Mathematics, S. Chand, 1987.			
	On completion of the course, students should be able to			
Course Outcomes	CO 1: remember the basic concepts of Differential Equations, Integration and Vector. CO 2: understanding about the concept of Formation of differential equations and solving the partial differential equations. CO 3: get an idea about the Laplace transforms and apply the differential equations. CO 4: get an idea about the Laplace transforms and apply the differential equations.			

Course Code & Title	15S103A AC I – Basic Mathematics		Percentage of Revision : NIL
I B.Sc. Computer Science	Semester : I	Credits : 4	Hrs/ Wk : 5
Cognitive Level	K-1 - Acquire K-2 - Understanding K-3 - Apply K-4 - Evaluate K-5 - Analyze		
Course Objectives	 The Course aims to introduce the concepts of matrices, successive differentiation, Laplace transforms and Fourier series. 		
Employability and Skill Development	National Need	Participative solving	Learning, Problem

UNIT	Content	No. of Hours
I	Types of Matrices – Characteristic Equation – Eigen Values – Eigen Vectors – Cayley Hamilton's Theorem (without proof)	15
II	Successive differentiation-Leibnitz's theorem and its applications-Integration by parts – Definite integrals and its properties.	15
III	To solve the second order differential equations when the RHS is of the type e^{kx} , $sinkx$, $coskx$, x^k , $e^{ax}x$.	15
IV	Definition of Laplace transform - Laplace transforms of e^{at} , cos at, coshat t^n , first shifting theorem - Laplace transforms of $f'(t)$, $f''(t)$ Inverse Transforms relating to the above standard forms -Applications to the solutions of ODE with constant coefficients involving the above transformations.	15
V	Definition of Fourier series- Finding Fourier constants for periodic function with period 2π - odd and even functions-Half-Range series.	15
Reference	 Text Books: P.Kandasamy, K. Thilagavathy, Allied Mathematics, & Company Ltd., 2003. Unit I:(P.No: 72 – 76, 114 – 128) Unit II: (P.No: 229) P.Kandasamy, K. Thilagavathy, Allied Mathematic Chand & Company Ltd., 2003. Unit II:(P.No: 46 – 50) Unit IV: (P.No: 234 – 284) Unit V: (P.No: 140 – 159) S. Narayanan, T. K. ManicavachagomPillai, Calculus, Publications, 2010.	9 – 245) cs, Paper II, S.

Course	On completion of the course, students should be able to		
Outcomes	•		
	CO 1: recollect the basic concepts of matrices and differentiation.		
	CO 2: understand the concepts about fundamental of ODE and characteristic equation		
	of a linear transformation and Cayley Hamilton theorem.		
	CO 3: solving the differential equations when the RHS is of the type e ^{kx} sinkx coskx		
	$x^k e^{ax}x$.		
	CO 4: demonstrate the Laplace transform and the apply the differential		
	equation and Fourier series, finding Fourier constants for periodic function with period		
	2π and half range Fourier series with period π .		

Course Code & Title	15S104A AC II – Operations Research	Percentage of Revision : NIL	
I B.Sc. Computer Science	Semester: I	Credits : 4	Hrs/ Wk : 4
Cognitive Level	K-1-Acquire K-2-Understanding K-3-Apply K-4-Evaluate K-5-Analyze		
Course Objectives	 The Course aims to understand the basic marketing concepts and its applications in markets. enhance the student knowledge in linear programming problem, Transportation problem, Assignment problem, Sequencing and Network scheduling. 		
Employability and Skill Development	Global Need	Participative Le solving	earning, Problem

UNIT	Content	No. of Hours	
I	Linear Programming Problem (LPP): Introduction - Canonical	12	
	and Standard forms of LPP -Mathematical formulation of LPP -		
	Solution for LPP: Graphical Method - Simplex Method Charne's		
	Penalty (Big-M) Method – Two Phase Simplex Method		
II	Transportation problem (TP) – Algorithm degeneracy –	12	
	Algorithm degeneracy in TP - Unbalanced TP.		
III	Assignment Algorithm – Unbalanced Assignment problem.	12	
IV	Sequencing problem - Processing of n jobs through two machines	12	
	- Processing of n job through three machines - Processing of two		
X 7	jobs through m machines.	10	
V	Network – Fulkerson's rule – Measure of activity – PERT	12	
Reference	computations – CPM computation. Text Books:		
Reference	Kanti Swarup, P.K. Gupta, Man Mohan, Operations Resear	ah Sultan Chand	
	&Company Ltd,11 th Edition, 2003.	cii, Suitaii Chand	
	Unit I : Ch 2,3		
	Unit II : Ch 6		
	Unit III : Ch 7 (7.1-7.3)		
	Unit IV : Ch 10 (10.1-10.5)		
	Unit V : Ch 21		
	Reference Books:		
	1. A. Taha, Operations Research, Keerthi Publishing House, 1997		
	2. J. K. Sharma, Operations Research for Management, NPH, 1992.		
	3. Prem Kumar Gupta, D.S. Hira, Problems in Operations Research	h, S. Chand, 2010.	
Course	On completion of the course, students should be able to		
Outcomes	CO 1: understand linear programs from standard business problems		
	CO 2: construct a project network and apply program evaluation rev	view	
	technique and critical path management.		
	CO 3: apply the fundamental concept of sequencing problem.		
	CO 4: solve the problems using PERT and CPM methods.		

Course Code & Title	15S207A AC III – Numerical & Statistical Methods	Percentage of Revision : NIL		: NIL
I B.Sc. Computer Science	Semester : II	Credits :	Hrs/ Wk	: 5
Cognitive Level	K-1 - Acquire K-2 - Understanding K-3 - Apply K-4 - Evaluate K-5 - Analyze			
Course Objectives	 The Course aims to enable the students to gain knowledge in solving system of equations. provides the techniques to find numerical solutions for various integrals. 			
Employability and Skill Development		Participative solving	Learning,	Problem

UNIT	Content	No. of Hours
I	Introduction - The Solution of numerical algebraic & Transcendental equations - Bisection method - Newton Raphson method - Iteration Method - Simultaneous Linear Algebraic equations - Gauss Elimination method - Jacobi and Gauss-Seidel methods.	15
II	Finite differences – Forward, Backward differences – Interpolation formulae – Newton-Gregory forward interpolation - Newton backward interpolation - Lagrange's interpolation-Numerical Differentiation.	15
III	Numerical Integration – Trapezoidal rule – Simpson's 1/3 rd rule – Numerical Solution of ODE – Taylor series methods - Solution by Euler's method – Runge Kutta 2 nd and 4 th order methods.	15
IV	Mean, Median, Mode, Standard Deviation – Correlation & Regression – Properties – Standard error of estimate.	15
V	Discrete & continuous distributions: Binomial, Poisson, Normal distributions — Mean, Variance, Recurrence relation, Additive property, Moment generating function of these distributions — Properties of normal distribution.	15
Reference	Text Books: 1. P. Kandasamy, K. Thilagavathy, K. Gunavathi, Numer Chand & Company Ltd, Revised Edition, 2005. Unit I : Ch3(3.1,3.2, 3.4), Ch 4(4.2,4.8,4.9) Unit II : Ch 5(5.1-5.3), Ch 6(6.1-6.3), Ch 7(7.5), Ch 8(8.7) Unit III : Ch 9(9.2-9.4,9.9,9.13), Ch 11(11.5,11.9,11.12,11.13). 2. S. C. Gupta, Fundamentals of Statistics, Himalaya Publishi Unit IV : Ch 5(5.4 - 5.7) Ch 6(6.9) Unit V : Ch 8(8.1-8.4), Ch 11(11.5,11.9,11.12,11.13)	

	Reference Books:		
	1. S.C. Gupta and V.K. Kapoor, Fundamentals of Statistics, Himalayan Publishing		
	House, 2000, ISBN: 81-7014-791-3		
	2. S.S. Sastry, Introductory Methods of Numerical Analysis, Prentice Hall		
	Publications ,2012 , ISBN: 8120345924		
Course	On completion of the course, students should be able to		
Outcomes			
	CO 1: understands different methods to solve the non-linear equations		
	CO 2: acquire the knowledge of regression analysis		
	CO 3: apply various methods to solve various integrals		
	CO 4: computing probabilities based on practical situations using binomial, poisson		
	and normal distributions.		

Course Code & Title	15A103A AC I – Statistical Method	Percentage of Revision : NIL	
I BCA	Semester : I	Credits: 4	Hrs/ Wk: 5
Cognitive Level	K-1-Acquire K-2-Understanding K-3-Apply K-4-Evaluate K-5-Analyze		
Course Objectives	 The Course aims to improve the basic knowledge relevant to their major subjects. This syllabus enables students to learn about the concept of analysis and probability distribution. 		
Employability and Skill Development	Global Need	Participative solving	Learning, Problem

UNIT	Content	No. of Hours	
I	Measures of central tendencies and dispersion: Mean,	15	
	Median, Mode, Standard Deviation, Variance, coefficient		
	of variation.		
II	Skewness, Moments and Kurtosis.	15	
III	Correlation and Regression Analysis: Types of	15	
	correlation-Karl Pearson's coefficient of correlation,		
	Rank Correlation coefficient- Regression lines-		
***	equations.	1.5	
IV	Definition of probability - Axiomatic approach to	15	
	probability - Addition and Multiplication Theorems -		
	Conditional Probability - Independent Events - Baye'stheorem.		
V	Random Variables- distribution and density functions-	15	
•	Binomial, Poisson and Normal distributions:	13	
	Definitions, Moments and Simple problems.		
Reference	Text Books:		
	S.C. Gupta, Fundamentals of Statistics, Himalaya Publishing House, 2009.		
	Unit I : Ch 5 (5.4 - 5.6, 5.7 - 5.7.1, 5.7.2), Ch 6 (6.9, 6.9.1-6.9.4)		
	Unit II : Ch 7		
	Unit III : Ch 8 (8.1 - 8.1.1, 8.4, 8.7), Ch 9 (9.1, 9.2,9.3-9.3.1-9.3.3)		
	Unit IV : Ch 12 (12.7-12.11)		
	Unit V : Ch 13 (13.1 - 13.5), Ch 14 (14.1-14.4)		
	Reference Books:		
	1. S.C.Gupta and V.K.Kapoor, Fundamentals of Statist	tics, Himalayan	
	publishingHouse, 1992. 2 S. P. Gunta and V. K. Kanaar, Statistical Mathods, S. Chand &	Co. 2000	
Course	2. S.P.Gupta and V.K.Kapoor, Statistical Methods, S Chand & On completion of the course, students should be able to	CU., 2007.	
Outcomes	CO 1: acquire the concepts of Mean, Median and Standard deviatio	n	
Jucomes	CO 2: understand the knowledge of Skewness and Kurtosis, Correlation and		
	Regression Analysis.		
	CO 3: apply the knowledge of axiomatic approach to independent events		
	CO 4: evaluate the Binomial, Poisson and Normal Distribution		

Course Code & Title	15A104A AC II – Operations Research for Computer Applications	Percentage of Revision : NIL	
I BCA	Semester : I	Credits: 4 Hrs/ Wk: 4	
Cognitive Level	K-1 - Acquire K-2 - Understanding K-3 - Apply K-4 - Evaluate K-5 - Analyze		
Course Objectives	 The Course aims to provide the basic tools of operations research in solving the management problems using mathematical approach for decision making. understand the concepts of linear programming problem. Transportation problems, Assignment problems, Sequencing and network scheduling. 		
Employability and Skill Development	Global Need	Participative Problem solv	٥,

UNIT	Content	No. of Hours	
I	Linear Programming formulations – Graphical Solutions of two	12	
	variables – Canonical and Standard forms of LPP.		
II	Simplex method for <,=,> constraints – Simplex method – Big M	12	
	method.		
III	Transportation problem Algorithm - degeneracy algorithm -	12	
	Degeneracy in TP – Unbalanced TP – Assignment Algorithm –		
	Unbalanced Assignment problem.		
IV	Sequencing problem - Processing of n jobs through two machines	12	
	 Processing of n job through three machines – Processing of two 		
	jobs through m machines.	12	
V	Network – Fulkerson's rule – Measure of activity – PERT	12	
D 6	computations – CPM computation.		
Reference	Text Books:		
	KantiSwarup, P.K. Gupta, ManMohan, Operations Research	i, Suitan Chand	
	&Company Ltd,11 th Edition, 2003. Unit I: Ch 1, Ch2		
	Unit II : Ch 3		
	Unit III : Ch 6, Ch 7 (7.1-7.3)		
	Unit IV : Ch 10 (10.1-10.5)		
	Unit V : Ch 10 (10.1-10.5)		
	Reference Books:		
	1.A. Taha, Operations Research, Keerthi Publishing House, 1997.		
	2.J. K. Sharma, Operations Research for Management, NPH, 1992.		
	3. Prem Kumar Gupta, D.S. Hira, Problems in Operations Research,	S. Chand, 2010.	
Course	On completion of the course, students should be able to	,	
Outcomes	•		
	CO 1: convert standard business problems into linear programs.		
	CO 2: solve linear programming problems by Graphical solution, Simplex		
	and Big-M method.		
	CO 3: apply the fundamental concept of sequencing problem.		
	CO 4: evaluate the PERT and CPM.		

Course Code &	15A207A		Percentage of	
Title	AC III – Algebra and Calcu	llus	Revision: 10%	
I BCA	Semester : I	Credits: 4	Hrs/ Wk : 5	
	K-1 – Acquire			
	K-2 – Understanding			
Cognitive Level	K-3 – Apply			
	K-4 – Evaluate			
	K-5 – Analyze			
C	The Course aims to			
Course	 gain the knowledge about of 	lifferentiation,	integration, differential	
Objectives	equation, Laplace transformation	and matrices.		
Employability	National Need	Participative	Learning, Problem	
and Skill		solving		
Development				

UNIT	Content	No. of Hours	
I	Types of matrices - Characteristic Equation - Eigen values -	15	
	Eigen vectors – Cayley Hamilton's theorem (without proof).		
II	Successive differential – Leibnitz's theorem and its application.	15	
III	Evaluation of integrals if types	15	
	$1.\int \frac{dx}{ax+bx+c} \qquad 2.\int \frac{dx}{\sqrt{ax^2+bx+c}} \qquad 3.\int \frac{(px+q)dx}{ax^2+bx+c} \qquad 4.\int \frac{(px+q)dx}{\sqrt{ax^2+bx}} \qquad -$		
	Integrating by parts – Definite integral and its properties.		
IV	To solve the second order differential equations when the RHS is	15	
	of the type e^{kx} , $\sin kx$, $\cos kx$, x^k , $e^{a\square}X$.		
V	Definition of Laplace transform – Laplace transforms of eat,	15	
	$\cos at$, $\cos hat$, t^n , first shifting theorem – e^{-at} $f(t)$, $f'(t)$, $f'(t)$		
	Inverse transforms relating to the above standard forms.		
Reference	Text Books:		
	A.AbdulRasheed, Allied Mathematics, MC. Graw Hill education Pvt	. Ltd,2006.	
	Unit I : Ch(3.1,3.3, 3.4)		
	Unit II : Ch 6(6.4)		
	Unit III : Ch 7(7.3-7.3.1,7.3.2,7.4,7.6).		
	Unit IV : Ch 10(10.4)		
	Unit V : Ch 12(12.1,12.2).		
	Reference Books:		
	1. M.K. Venkatraman, Engineering Mathematics, NPC-1998	3.6.4	
	2. P.Kandasamy, K.Thilagavathy, K.Gunavathy, Engineerin	g Mathematics,	
C	S.Chand& Company Ltd,1987.		
Course	On completion of the course, students should be able to		
Outcomes	CO 1, understand the concents of types of matrices, successive		
	CO 1: understand the concepts of types of matrices, successive differentiation, integration and Laplace transform.		
	CO 2: find the eigen values and vectors, Leibnitz's theorem and its		
	application.		
	CO 3: apply the concepts of Laplace transforms of e^{at} , $\cos at$, $\cos ha$	at t ⁿ	
	and integration by parts and its properties.		
	CO 4: solve the second order differential equation of the type e^{kx} ,		
	$\sin kx$, $\cos kx$, x^k , $e^{ax}X$.		
	SIII RA, CUS RA, A , E A.		

Course Code & Title	15B411A AC I – Operation Research	Percentage of Revision: NIL	
Class	II BBA	Semester	IV
Cognitive Level	K-1 - Acquire K-2 - Understanding K-3 - Apply K-4 - Evaluate K-5 - Analyze		
Course Objectives	The Course aims to		
Employability and Skill Development	Global Need	Participative solving	Learning, Problem

UNIT	Content	No. of Hours
I	Introduction to OR and LPP	15
	Meaning and scope – Characteristics – LPP formulation –	
	Graphical method – Simplex method – Application in business –	
	Merits and demerits.	
II	Transportation problems	15
	Introduction – Basic feasible solution – Formulation – Solving	
	transportation problems – North West corner rule – Vogel's	
	approximation –least cost method – Assignment problems.	1.5
III	Network analysis	15
	Introduction – Numbering of event – time estimates in network	
137	analysis – Critical path method – PERT method.	15
IV	Queuing theory & Game theory Definition — benefits of Queuing theory — Single channel	13
	Queuing model – Queuing cost behaviour – Game	
	theory: Meaning and characterization – Saddle point – Dominance	
	property- Different methods – of solving game theory problems	
	(No LPP)	
V	Decision theory	15
	Definition - Structure of decision making problem - Types of	
	decision making criteria – Baye's theorem and its application –	
	Decision tree analysis.	
Reference	Text Books:	
	1. V. K. Kapoor, Operation Research, Sultan Chand & Sons, 199	1.
	Reference Books:	
	1. P. K. Gupta & Manmohan, Problems in Operation Research	h, Sultan Chand &
	Sons, 1994.	la Dalassa I lasta d
	2. R. Panneerselvam, Operation Research, PHI Learning Indi 2009.	ia Private Limited,
	3. P. R. Vittal and V. Malini, Operation Research, Margham Publi	ications 2012
Course	On completion of the course, students should be able to	icanons, 2012.
Outcomes	CO 1: understand linear programs from standard business problems	
Cutcomes	CO 2: construct a project network and apply program evaluation re	
	critical path management.	que una
	CO 3: apply the fundamental concept of sequencing problem.	
	CO 4: solve the problems using PERT and CPM methods.	